1.Giả sử số tự nhiên a chia cho 7 dư 3. CMR a chia cho 7 dư 2
2. Cho a chia 11 dư 4 ( a thuộc N ). Hỏi a2 chia cho 11 dư bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) nếu a chia cho 11 dư 4 thì a = 15 => a^2=15^2=225 <=> a^2:11=225:11=20 dư 5
a)
a chia cho 7 dư 3 nên a có dạng 7k+3 (k thuộc Z)
Ta có:
\(a^2=\left(7k+3\right)^2=49k^2+42k+9\)'
\(=7\left(7k^2+6k+1\right)+2\)chia cho 7 dư 2
Vậy nếu a chia cho 7 dư 3 thì a^2 chia cho 7 dư 2
b)
a chia cho 11 dư 4 nên a có dạng 11k+4 (k thuộc Z)
Ta có:
\(a^2=\left(11k+4\right)^2=121k^2+88k+16\)'
\(=11\left(11k^2+8k+1\right)+5\)chia cho 11 dư 5
Vậy nếu a chia cho 11 dư 4 thì a^2 chia cho 11 dư 5
\(a=17k+11\Rightarrow a+74=17k+85⋮17\)
\(a=23t+18\Rightarrow a+74=23t+92⋮23\)
\(a=11m+3\Rightarrow a+74=11m+77⋮11\)
Từ đó \(a+74\in BC\left(17;23;11\right)\)
\(BCNN\left(17;23;11\right)=17.23.11=4301\)
\(a+74\in B\left(4301\right)\)
\(\Rightarrow a+74=4301q\left(q\inℕ^∗\right)\)
\(\Rightarrow a+74-4301=4301q-4301\)
\(\Rightarrow a-4227=4301\left(q-1\right)\Rightarrow a=4301\left(q-1\right)+4227\)
Vậy a chia 4301 dư 4227
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
câu 1 sai đề bạn ạ
câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11
1.Đề sai
2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N
Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)
Do đó \(a^2\) chia 11 dư 5