cho n là STN . chứng minh rằng : b) n ( n + 1 ) ( n + 2 ) chia hết cho 2 và 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình biết cách làm
đó mai mình
chỉ cho nhé vì
mình cũng làm bài
này nhiều rùi
Gợi ý:
Cách làm:Sử dụng tính chất:Trong n stn liên tiếp luôn có 1 và chỉ 1 stn chia hết cho n.
Chứng minh đc trong tích trên có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2.
Vậy là xong.
Đặt \(A=n\left(n+1\right)\left(2n+1\right)\)
+) \(n=2k\Rightarrow A⋮2\)
+) \(n=2k+1\Rightarrow n+1=2k+1+1=2\left(k+1\right)⋮2\Rightarrow A⋮2\)
\(\Rightarrow A⋮2\) (2)
+) \(n=3k\Rightarrow A⋮3\)
+) \(n=3k+1\Rightarrow2n+1=2\left(3k+1\right)+1=3\left(2k+1\right)⋮3\Rightarrow A⋮3\)
+) \(n=3k+2\Rightarrow n+1=3k+2+1=3\left(k+1\right)⋮3\)
\(\Rightarrow A⋮3\) (1)
\(\text{Từ (1); (2): }\Rightarrow A⋮2.3=6\left(n\inℕ\right)\)
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
co:n^2+n+1
=n.n+n+1
=n.[n+1]+1
co:n.[n+1]la h cua 2 so tu nhien lien tiep
ma h cua 2 so tu nhien lien tiep luon la 1so chan
=>n.[n+1]+1 la so le
=>n.[n+1]+1 ko chia het cho 2 hay n^2+n+1 ko chia het cho 2
Trong 2 số tự nhiên liên tiếp, có 1 số chẵn và 1 số lẻ. n(n+1 ) ( n +2 ) là tích 3 số tự nhiên liên tiếp nên có ít nhất 1 số chẵn, tức chia hết cho 2.
Trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3; 1 số chia 3 dư 1 và 1 số chia 3 dư 2; do đó tích n ( n + 1 ) ( n + 2) có 1 thừa số chia hết cho 3 nên tích chia hêt cho 3.
Vậy ....
Do n; n+1; n+2 là 3 số tự nhiên liên tiếp nên trong 3 số này có 1 số chia hết cho 3 và có ít nhất 1 số chia hết cho 2
=> n.(n+1).(n+2) chia hết cho 2 và 3
=> đpcm
Ủng hộ mk nha ^_-