K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

55n+1-55n=55n.(55-1)=55n.54 chia hết cho 54

Vậy 55n+1 chia hết cho 54

11 tháng 7 2016

Ta có:\(55^{n+1}-55^n\)

\(=55^n.55-55^n\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\) chia hết cho 54

Vậy \(55^{n+1}-55^n\) chia hết cho 54 với n là số tự nhiên

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!!

13 tháng 12 2017

đồ ngu =200004

13 tháng 12 2017

n2 + n + 1

= n . n + n + 1

= n . ( n + 1 ) + 1

Do n . ( n + 1 ) là hai số  liên tiếp => có tận cùng là : 0;2;6

=> n . ( n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7 không chia hết cho 2

Vậy n2.n+1 không chia hết cho 2

11 tháng 5 2017

Đề là gì vậy bạn ???

11 tháng 5 2017

chung minh ban a

29 tháng 9 2019

đề sai nha bạn

đề kiểu j vậy bn

mk chịu

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

29 tháng 9 2019

Có : 55n + 1 – 55n

= 55n.55 – 55n

= 55n(55 – 1)

= 55n.54

Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.

Vậy 55n + 1 – 55n chia hết cho 54.

10 tháng 5 2017

vì n chẵn => n=2k (k thuộc N)

\(\Rightarrow A=20^n+16^n-3^n-1=20^{2k}+16^{2k}-3^{2k}-1\)

\(=\left(20^{2k}-1\right)+\left(16^{2k}-3^{2k}\right)\)

+Có: \(20^{2k}-1⋮20-1=19\forall k\in N\)

\(16^{2k}-3^{2k}⋮\left(16+3\right)\left(16-3\right)\in k\forall N\Rightarrow16^{2k}-3^{2k}⋮19\)

=> A chia hết cho 19

\(A=\left(20^{2k}-3^{2k}\right)+\left(16^{2k}-1\right)\)

tương tự ta có \(20^{2k}-3^{2k}⋮17\)và \(16^{2k}-1⋮17\)

suy ra A chia hết cho 17 => A chia hết cho 17 và 19

Mà ƯCLN(17,19)=1 

=> A chia hết cho 323

10 tháng 5 2017

minh ko hieu cho co