K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2022

Giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) có nghiệm \(x=1\)

\(\Rightarrow2+a+b=0\Rightarrow b=-a-2\)

Ta được: \(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(x+1\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+1}\)

\(=\dfrac{4+a}{2}=\dfrac{1}{4}\)

\(\Rightarrow a=-\dfrac{7}{2}\Rightarrow b=\dfrac{3}{2}\)

NV
8 tháng 3 2022

\(x^2+2x-3=0\) có nghiệm \(x=1\) nên giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) cũng có nghiệm \(x=1\)

\(\Rightarrow2.1^2+a.1+b=0\Rightarrow a+b+2=0\Rightarrow b=-a-2\)

Thay vào:

\(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2+2x-3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+3}=\dfrac{4+a}{4}=\dfrac{3}{4}\)

\(\Rightarrow4+a=3\Rightarrow a=-1\Rightarrow b=-a-2=-1\)

24 tháng 1 2021

a/ \(=\lim\limits_{h\rightarrow0}\dfrac{2x^3+6x^2h+6xh^2+2h^3-2x^3}{h}\)

\(=\lim\limits_{h\rightarrow0}\dfrac{6xh^2+6x^2h+2h^3}{h}=\lim\limits_{h\rightarrow0}\left(6xh+6x^2+2h^2\right)=6x^2\)

b/ Xet day :\(S=x+x^2+....+x^{2021}\)

Day co \(\left\{{}\begin{matrix}u_1=x\\q=x\end{matrix}\right.\Rightarrow S=u_1.\dfrac{q^{2021}-1}{q-1}=x.\dfrac{x^{2021}-1}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}-x}{x-1}-2021}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-x-2021x+2021}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}}{x^2}-\dfrac{x}{x^2}-\dfrac{2021x}{x^2}+\dfrac{2021}{x^2}}{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow1}\dfrac{x^{2020}}{1}=1\)

 

 

 

24 tháng 1 2021

Lam lai cau b, hinh nhu bi nham sang dang \(\dfrac{\infty}{\infty}\) roi

Xet day: \(S=x+x^2+...+x^{2021}\)

\(\Rightarrow S=x.\dfrac{x^{2021}-1}{x-1}=\dfrac{x^{2022}-x}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-2022x+2021}{\left(x-1\right)^2}\)

L'Hospital: \(\Rightarrow...=\lim\limits_{x\rightarrow1}\dfrac{2022x^{2021}-2022}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2022.2021.x^{2020}}{2}=2043231\)

Is that true :v?

 

4 tháng 4 2017

a) Ta có (x - 2)2 = 0 và (x - 2)2 > 0 với ∀x ≠ 2 và (3x - 5) = 3.2 - 5 = 1 > 0.

Do đó = +∞.

b) Ta có (x - 1) và x - 1 < 0 với ∀x < 1 và (2x - 7) = 2.1 - 7 = -5 <0.

Do đó = +∞.

c) Ta có (x - 1) = 0 và x - 1 > 0 với ∀x > 1 và (2x - 7) = 2.1 - 7 = -5 < 0.

Do đó = -∞.



4 tháng 4 2017

Giỏi quá ta, chắc là hs cao tuổi nhất ...

7 tháng 2 2021

1/ \(=\lim\limits_{x\rightarrow0}\dfrac{3\left(1+3x\right)^2.3+4.4\left(1-4x\right)^3}{1}=...\left(thay-x-vo\right)\)

2/ \(=\lim\limits_{x\rightarrow2}\dfrac{2.2.x-5}{3x^2-3}=\dfrac{4.2-5}{3.4-3}=\dfrac{1}{3}\)

3/ \(=\lim\limits_{x\rightarrow1}\dfrac{4x^3-3}{3x^2+2}=\dfrac{4.1-3}{3.1-2}=1\)

Xai L'Hospital nhe :v

23 tháng 2 2021

câu 1 bạn lm kiểu j vậy chả hiểu luôn bạn có thể lm lại chi tiết hơn dc ko

26 tháng 12 2023

\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\rightarrow\lim\limits_{x\rightarrow1}\left(f\left(x\right)-2x+1\right)=0\\ \rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=1\)

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}=\dfrac{\sqrt{3.1+1}-1-1}{\sqrt{4.1+5}-3.1-2}=0\)

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow1}\dfrac{\left(x^2-3x+2\right)\left(x+\sqrt{5x-4}\right)}{\left(x^2-5x+4\right)\left(x+2+\sqrt{7x+2}\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x-2\right)\left(x+\sqrt{5x-4}\right)}{\left(x-1\right)\left(x-5\right)\left(x+2+\sqrt{7x+2}\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-2\right)\left(x+\sqrt{5x-4}\right)}{\left(x-5\right)\left(x+2+\sqrt{7x+2}\right)}=\dfrac{1}{12}\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=12\end{matrix}\right.\)

23 tháng 2 2022

Tham khảo:

 

Vì hàm số có giới hạn hữu hạn tại x=1 nên biểu thức tử nhận x=1 làm nghiệm, hay 1+a+b=0.

Áp dụng vào giả thiết, được

\(^{lim}_{x\rightarrow1}\dfrac{x^2+ax-1-a}{x^2-1}=-\dfrac{1}{2}\Leftrightarrow^{lim}_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1+a\right)}{\left(x-1\right)\left(x+1\right)}=-\dfrac{1}{2}\)

\(\Leftrightarrow^{lim}_{x\rightarrow1}\dfrac{x+1+a}{x+1}=-\dfrac{1}{2}\Leftrightarrow\dfrac{2+a}{2}=-\dfrac{1}{2}\Leftrightarrow a=-3\)

\(\Rightarrow b=2\)

 

AH
Akai Haruma
Giáo viên
23 tháng 2 2022

Lời giải:
Vì $x^2-1\to 0$ khi $x\to 1$ nên để giới hạn đã cho hữu hạn thì $x^2+ax+b$ nhận $x=1$ là nghiệm 

$\Leftrightarrow 1+a+b=0$

$\Leftrightarrow b=-a-1$

Khi đó:
\(\lim\limits_{x\to 1}\frac{x^2+ax+b}{x^2-1}=\lim\limits_{x\to 1}\frac{x^2+ax-a-1}{x^2-1}=\lim\limits_{x\to 1}\frac{(x-1)(x+1+a)}{(x-1)(x+1)}=\lim\limits_{x\to 1}\frac{x+a+1}{x+1}\)

\(=\frac{a+2}{2}=\frac{-1}{2}\Rightarrow a+2=-1\Rightarrow a=-3\)

$b=-a-1=3-1=2$