Bài 5: Cho tam giác MNP, có A là trung điểm của NP. Trên tia MA lấy điểm B sao cho A là trung điểm MB.
a) Chứng minh: MAP = BAN
b) Chứng minh: MP song song với BN
c) Kẻ BH vuông góc với NP (H thuộc NP). Trên tia BH lấy điểm I sao cho H là trung điểm BI. Chứng minh: AM = AI.
nhanh ạ mình đag kt
a: Xét ΔMAP và ΔBAN có
AM=AB
\(\widehat{MAP}=\widehat{BAN}\)(hai góc đối đỉnh)
AP=AN
Do đó: ΔMAP=ΔBAN
b: Ta có: ΔMAP=ΔBAN
=>\(\widehat{AMP}=\widehat{ABN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MP//BN
c: Xét ΔAIB có
AH là đường cao
AH là đường trung tuyến
Do đó:ΔAIB cân tại A
=>AI=AB
mà AB=AM
nên AI=AM