K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

\(4-2x^2\)

\(=2^2-2x^2\)

\(2^2-2x^2\ge0\)

Rồi làm tiếp nha 

11 tháng 7 2016

BT trên không có GTNN ,bn nên xem lại đề

23 tháng 6 2018

MẶC DÙ TA CÓ A>HOẶC =0,,NHƯNG CHƯA THỂ KẾT LUẬN ĐƯỢC MIN CỦA A=0 VÌ KO TỒN TẠI  GIÁ TRỊ NÀO CỦA X ĐỂ A=0

\(\Leftrightarrow E=x^2-8x+16+4x^2-4x+1\)

\(\Leftrightarrow E=5x^2-12x+17\)

\(\Leftrightarrow E=5\left(x-\frac{6}{5}\right)^2+\frac{49}{5}\ge\frac{49}{5}\)

vậy GTNN của E=49/5 tại x=6/5

10 tháng 9 2016

Q = 2x2 - 6x  => 2Q = 4x2 - 12x  => 2Q = 4x2 - 12x + 9 - 9  => 2Q = (2x - 3)2 - 9 \(\ge\)-9   => Q \(\ge\)-4,5

Đẳng thức xảy ra khi: (2x - 3)2 = 0  => x = \(\frac{2}{3}\)

Vậy giá trị nhỏ nhất của Q là -4,5 khi x = \(\frac{2}{3}\)

10 tháng 12 2021

\(M=\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\\ M_{min}=-\dfrac{1}{4}\Leftrightarrow x=y=-\dfrac{1}{2}\)

10 tháng 12 2021

Wow

 

21 tháng 6 2018

Ta có:

\(B=-2x^2+8x-15\\ \Leftrightarrow-2\left(x^2-4x+\frac{15}{2}\right)\\ \Leftrightarrow-2\left(x^2-4x+4-4+\frac{15}{2}\right)\\ \Leftrightarrow-2\left[\left(x-2\right)^2+\frac{7}{2}\right]\\ \Leftrightarrow-2\left(x-2\right)^2-7\)

Vì \(\left(x-2\right)^2\ge0\) nên \(-2\left(x-2\right)^2\ge0\) \(\Rightarrow B\ge7\)

Vậy minB = 7 (khi x = 2)

AH
Akai Haruma
Giáo viên
24 tháng 3 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$

$\geq |2x-4+8-2x|+|2x-6|$

$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix} (2x-4)(8-2x)\geq 0\\ 2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)

25 tháng 3 2023

cảm ơn cô

 

 

28 tháng 6 2015

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5

28 tháng 6 2015

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

4 tháng 5 2017

Ta có:I x+2I; I 2y - 10I lớn hơn hoặc bằng 0 vs mọi x 

Để S nhỏ nhất thì  Ix+2I; I 2y - 10I => x+2 = 0 và 2y-10 = 0 => x=-2 và y=5

6 tháng 2 2018

Ta thấy |x + 2| ≥ 0 với mọi x

             |2y - 10| ≥ 0 với mọi y

=> |x + 2| + |2y - 10| ≥ 0 với mọi x,y

=> |x + 2| + |2y - 10| + 1010 ≥ 1010 với mọi x,y

=> S ≥ 1010 với mọi x,y

Dấu " = " xảy ra

\(\Leftrightarrow\hept{\begin{cases}|x+2|=0\\|2y-10|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)

Vậy với x = -2 và y = 5 thì S đạt GTNN là 1010.