làm hộ mình con này khó quá CMR:n2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n
mình cần gấp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(2n-3) - 2n(n+1)
= 2n2 - 3n - 2n2 - 2n
= (2n2 - 2n2) - (3n + 2n)
= 0 - (-5)n
= (-5)n
Vì tích có chứa thừa số -5\(⋮\)5 nên chia hết cho 5
Vậy n(2n-3) - 2n(n+1)\(⋮\)5 với \(\forall\)n\(\in\)Z
Ta có:
2n+1 chia hết cho n-3
<=> 2n+1-6+6 chia hết cho n-3
<=> 2n-6+7 chia hết cho n-3
Vì 2n-6 chia hết cho n-3 mà 2n-6+7 chia hết cho n-3 => 7 chia hết cho n-3
=>n-3 thuộc Ư(7)={-1;1;-7;7}
Nếu n-3=-1 =>n=2(t/m)
Nếu n-3=1 =>n=4(t/m)
Nếu n-3=-7 =>n=-4(t/m)
Nếu n-3=7 =>n=10(t/m)
Vậy n= -4;2;4;10
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
Ta có : \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n là số nguyên , n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 => n(n+1)(n+2) chia hêt cho 2x3 = 6
Hay \(n^2\left(n+1\right)+2n\left(n+1\right)\)luôn chia hết cho 6 với mọi số nguyên n.
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
n(2n - 3) - 2n(n + 1) = 2n2 - 3n - 2n2 - 2n = -5n
Do: -5 chia hết cho 5 => -5n chia hết cho 5 với mọi n nguyên
Vậy n(2n - 3) - 2n(n + 1) chia hết cho 5 với mọi n nguyên
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)