Tính giá trị biểu thức
( 1 - \(\frac{1}{2}\)) x ( 1 - \(\frac{1}{3}\)) x ( 1 - \(\frac{1}{4}\)) x ( 1 - \(\frac{1}{5}\))
\(\frac{1}{4}\)+ \(\frac{1}{8}\)+\(\frac{1}{16}\)+ \(\frac{1}{32}\)+ \(\frac{1}{64}\) + \(\frac{1}{128}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{1+x+1-x}{\left(1+x\right)\left(1-x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{16+16x^{16}+16-16x^{16}}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{32}{1-x^{32}}\)
Bài 1:
a) Ta có:
\(3,2\cdot x+\left(-1,2\right)\cdot x+2,7=-4,9\)
\(\Rightarrow\left[3,2+\left(-1,2\right)\right]\cdot x=\left(-4,9\right)-2,7\)
\(\Rightarrow2x=-7,6\)
\(\Rightarrow x=\left(-7,6\right):2\)
\(\Rightarrow x=-3,8\)
Vậy \(x=-3,8\)
b) Ta có:
-5,6.x+2,9.x-3,86=-9,8
=>[(-5,6)+2,9].x=(-9,8)+3,86
=>(-2,7).x=-5,94
=>x=(-5,94):(-2,7)
=>x=2,3
Vậy x=2,2
Ta có:
M = \(\frac{1}{1-x}\cdot\frac{1}{1+x}\cdot\frac{1}{1+x^2}\cdot\frac{1}{1+x^4}\cdot\frac{1}{1+x^8}\cdot\frac{1}{1+x^{16}}\)
M = \(\frac{1}{\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^2\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^4\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^8\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{1-x^{32}}\)
B1
a) \(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right):16\frac{2}{3}=0\)
\(1-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=0\)
\(1-\left(x-\frac{11}{6}\right).\frac{3}{50}=0\)
\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1-0\)
\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1\)
\(x-\frac{11}{6}=1:\frac{3}{50}\)
\(x-\frac{11}{6}=\frac{50}{3}\)
\(x=\frac{50}{3}+\frac{11}{6}\)
\(x=\frac{37}{2}\)
b) \(\frac{3}{5}+\frac{5}{7}:x=\frac{1}{3}\)
\(\frac{5}{7}:x=\frac{1}{3}-\frac{3}{5}\)
\(\frac{5}{7}:x=-\frac{4}{15}\)
\(x=\frac{5}{7}:\left(-\frac{4}{15}\right)\)
\(x=-\frac{75}{28}\)
c) \(\left(4\frac{1}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)
\(\left(\frac{9}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)
\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{9}.\frac{7}{4}\)
\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{2}\)
\(\frac{2}{5}.x=\frac{9}{2}-\frac{11}{2}\)
\(\frac{2}{5}.x=-1\)
\(x=-1:\frac{2}{5}\)
\(x=-\frac{5}{2}\)
B2
a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{2}{6}\right).24:5-\frac{9}{22}:\frac{15}{121}\)
\(=\left(\frac{3}{6}+\frac{2}{6}+\frac{2}{6}\right).24:5-\frac{9}{22}.\frac{121}{15}\)
\(=\frac{7}{6}.24:5-\frac{33}{10}\)
\(=28:5-\frac{33}{10}\)
\(=\frac{28}{5}-\frac{33}{10}\)
\(=\frac{56}{10}-\frac{33}{10}\)
\(=\frac{23}{10}\)
b) \(\frac{5}{14}+\frac{18}{35}+\left(1\frac{1}{4}-\frac{5}{4}\right):\left(\frac{5}{12}\right)^2\)
\(=\frac{25}{70}+\frac{36}{70}+\left(\frac{5}{4}-\frac{5}{4}\right):\frac{25}{144}\)
\(=\frac{61}{70}+0:\frac{25}{144}\)
\(=\frac{61}{70}+0\)
\(=\frac{61}{70}\)
A = \(\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+...+\frac{16}{1+x^{16}}=\frac{2}{1-x^2}+\frac{2}{1+x^2}+..+\frac{16}{1+x^{16}}\)
\(=\frac{2+2x^2+2-x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+..+\frac{16}{1+x^{16}}=\frac{4}{1-x^{^4}}+...+\frac{16}{1+x^{16}}\)
Tưng tự
= \(\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}=\frac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\frac{32}{1-x^{32}}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\)\(\left(1-\frac{1}{5}\right)\)
=\(\frac{1}{2}.\)\(\frac{2}{3}\cdot\frac{3}{4}\)\(\cdot\frac{4}{5}\)
=\(\frac{1}{5}\)
( 1 - 12 ) x ( 1 - 13 ) x ( 1 - 14 ) x ( 1 - 15 )
= \(\left(\frac{2}{2}-\frac{1}{2}\right)\times\left(\frac{3}{3}-\frac{1}{3}\right)\times\left(\frac{4}{4}-\frac{1}{4}\right)\times\left(\frac{5}{5}-\frac{1}{5}\right)\)
= \(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)
= \(\frac{1\times2\times3\times4}{2\times3\times4\times5}\)
= \(\frac{1}{5}\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>14 + 18 +116 + 132 + 164 + \(\frac{1}{128}\) MC : 128
= \(\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)
= \(\frac{32+16+8+4=2+1}{128}\)
= \(\frac{207}{128}\)