Cho tam giác ONP. Lấy một điểm E thuộc cạnh ON, điểm F thuộc cạnh OP. Có bao nhiêu cặp tia đối trong hình ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AFCD có
E là trung điểm chung của AC và FD
=>AFCD là hình bình hành
b: EG//AB
AB\(\perp\)AC
Do đó: EG\(\perp\)AC
c:
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
a: Xét ΔAMD và ΔCMB có
MA=MC
góc AMD=góc CMB
MD=MB
=>ΔAMD=ΔCMB
b: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
=>ΔABC=ΔCDA
c: Sửa đề: MF vuông góc BC
Xét ΔMBF và ΔMDE có
MB=MD
góc MBF=góc MDE
BF=DE
=>ΔMBF=ΔMDE
=>góc MFB=90 độ
=>MF vuông góc BC
d: ΔMFB=ΔMED
=>góc FMB=góc EMD
=>góc EMD+góc DMF=180 độ
=>M,E,F thẳng hàng
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
a: Xét ΔFEB và ΔFDC có
góc FEB=góc FDC
góc F chung
=>ΔFEB đồng dạng với ΔFDC
Xét ΔEAD và ΔEBF có
góc EAD=góc EBF
góc AED=góc FEB
=>ΔEAD đồng dạng với ΔEBF
Xét ΔABD và ΔCDB có
góc ABD=góc CDB
góc A=góc C
=>ΔABD đồng dạng với ΔCDB
Xét ΔABC và ΔCDA có
góc ABC=góc CDA
góc BAC=góc DCA
=>ΔABC đồng dạng với ΔCDA
CM: a) Xét tam giác AME và tam giác DMB
có ME = MB (gt)
góc AME = góc BMD (đối đỉnh)
MA = MD (gt)
=> tam giác AME = tam giác DMB (c.g.c)
=> góc E = góc MBD (hai góc tương ứng)
Mà góc E và góc MBD ở vị trí so le trong
=> AE // BC (1)
b) Xét tam giác AEM và tam giác DCM
có MA = MD(gt)
góc EMA = góc DMC (đối đỉnh)
ME = MC (gt)
=> tam giác AEM = tam giác DCM (c.g.c)
=> góc F = góc MCD (hai góc tương ứng)
Mà góc F và góc MCD ở vị trí so le trong
=> AF // BC (2)
Từ (1) và (2) suy ra AF \(\equiv\)AE ( theo tiên đề ơ - clit)
=> F,A,E thẳng hàng
c) Xét tam giác FMB và tam giác CME
có MF = MC (gt)
góc FMB = góc EMC (đối đỉnh)
BM = EM (gt)
=> tam giác FMB = tam giác CME (c.g.c)
=> góc BFM = góc MCE (hai góc tương ứng)
mà góc BFM và góc MCE ở vị trí so le trong
=> BF // CE
a,xét tam giác AME và tam giác DMB có
MD=MA ( giả thiết )
góc BMD = góc AME ( đối đỉnh)
BM = ME ( giả thiết )
=> tam giác AME = tam giác DMB ( c-g-c)
góc AEM = góc MBD ( cặp góc tương ứng )
Do 2 góc này ở vị trí so le trong bằng nhau => AE // BD
TẠM THỜI MÌNH CHỈ LÁM CÂU a
TRONG THỜI GIAN SỚM NHẤT MÌNH SẼ LÀM TIẾP