7^1000-3^1000 chia hết cho 10. Hãy chứng minh điều đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7 :43^1 =43. tận cùng là số 3
43^2= 1849 tận cùng là số 9
43^3 =79507 tận cùng là số 7
43^4 =3418801 tận cùng là số 1
43^5 = 147008443 tiếp tục tận cùng là số 3
vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1
ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7
tương tự ta có số tận cùng của 17^17 là 7.
vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)
Bài 8 : \(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.
=> \(49^{500}\) tận cùng là 1
=> \(9^{500}\) tận cùng là 1
=> (...1) - (....1) = (....0)
Vì tận cùng là 0 nên chia hết cho 10
Vậy 71000 - 31000 chia hết cho 10 (đpcm)
Câu hỏi của Đỗ Quang Thanh - Toán lớp 7 - Học toán với OnlineMath
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
71000 ,là 1 số lẻ . 301000 luân là số chẵn mà ; 1 số chẵn trừ đi 1 số lẻ bao giờ cũng cho kết quả lẻ
nên 71000- 301000 = ( 1 số lẻ ) không thể chia hết cho 10 đâu THANH ạ
Chắc bạn đánh sai đề, đúng ra phải là 3 chứ không phải 30 đâu Thanh ơi
\(7^{1000}=\left(7^4\right)^{250}=\left(49\cdot49\right)^{250}\)có tận cùng là 1
\(3^{1000}=\left(3^4\right)^{250}=\left(9\cdot9\right)^{250}\)có tận cùng là 1
Hiệu \(7^{1000}-3^{1000}\)có tận cùng là 0 nên chia hết cho 10. đpcm.
Ta có:
71000 - 31000
= (74)250 - (34)250
= (...1)250 - (...1)250
= (...1) - (...1)
= (...0) chia hết cho 10
=> đpcm
Ủng hộ mk nha ☆_☆^_-