Tìm số có 2 chữ số ab sao cho 2*ab + 1 và 3*ab + 1 đều là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x +1 là số lẻ nên (2x+1)2 là số chính phương lẻ
120 < (2x+1)2 < 200 => (2x+1)2 = 121 ; 169
+) (2x+1)2 = 121 => 2x + 1= 11 hoặc -11=> x = 5 hoặc x = -6
+) (2x+1)2 = 169 => 2x + 1 = 13 hoặc 2x + 1= -13 => x = 6 hoặc x = -7
Vậy....
\(\left(I\right)\hept{\begin{cases}2\cdot\overline{ab}+1=p^2\left(1\right)\\3\cdot\overline{ab}+1=q^2\left(2\right)\end{cases}}\)
Từ (1) p lẻ => 2*ab = (p-1)(p+1) mà p+1 và p-1 chẵn (vì p lẻ) => ab chẵn => b chẵn. (*)
ab chẵn => 3*ab + 1 lẻ ; => q lẻ => q có dạng 4k + 1 => ab chia hết cho 4 (**) . (tính chất: Không có số chính phương nào có dạng 4k+3).
- Nếu b = 2 thì \(3\cdot\overline{ab}+1\)có chữ số tận cùng là 7 => \(3\cdot\overline{ab}+1\)không phải là số chính phương - loại
- Nếu b = 4 thì \(3\cdot\overline{ab}+1\)có chữ số tận cùng là 3 => \(3\cdot\overline{ab}+1\)không phải là số chính phương - loại
- Nếu b = 6 thì \(2\cdot\overline{ab}+1\)có chữ số tận cùng là 3 => \(2\cdot\overline{ab}+1\)không phải là số chính phương - loại
- Nếu b = 8 thì \(2\cdot\overline{ab}+1\)có chữ số tận cùng là 7 => \(2\cdot\overline{ab}+1\)không phải là số chính phương - loại.
- => b = 0.
b = 0 mà ab chia hết cho 4 thì ab chỉ có thể là: 40 và 80. Thay vào (I) ta có:
\(\left(I\right)\hept{\begin{cases}2\cdot40+1=81=9^2\left(TM\right)\\3\cdot40+1=121=11^2\left(TM\right)\end{cases}}\)\(\left(I\right)\hept{\begin{cases}2\cdot80+1=161\left(koTM\right)\\...\end{cases}}\)
Vậy , ab duy nhất bằng 40.
bạn đinh thùy linh có thể giải thích cho mình p và q nghĩa là sao không
ta có 4ab+1 là số lẻ => 4ab+1 là scp lẻ chia 8 dư 1
mà\(10\le ab\le99\)\(\Rightarrow40\le4ab\le396\Rightarrow41\le4ab+1\le397\)
=> 4ab+1 có thể = 49;81;121;169;225;289;361
Xét bảng
4ab+1 | 49 | 81 | 121 | 169 | 225 | 289 | 361 |
ab | 12 | 20 | 30 | 42 | 56 | 72 | 90 |
3ab | 36 | 60 | 90 | 126 | 168 | 216 | 270 |
TM | LOẠI | LOẠI | LOẠI | LOẠI | LOẠI | LOẠI |
Vậy ab = 13