K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Phần (2) bạn làm sai rồi ❌:

Theo mk thì là thế này:

Để a nguyên thì 3n+9 chia hết cho n-4

=>3(n-4)+12+9 chia hết cho n-4

=>3(n-4)+21 chia hết cho n-4

=>21chia hết cho n-4 (vì 3(n-4) chi

2 tháng 9 2017

=>21 chia hết cho n-4(vì 3(n-4) chia hết cho n-4)

=>n-4 € Ư(21)

=> n-4 € {1;3;7;21;-1;-3;-7;-21}

=>n € {5;7;11;25;3;1;-3;-25}

Bạn tự thử lại xem thế nào nha😉

Bài làm của bạn cũng ra kết quả đúng nhưng mk ko biết cách làm của bạn 😇

Tại hồi nãy mk nhấn nhầm xin lỗi nha😓

14 tháng 11 2021

b) \(\Rightarrow\left(n+2\right)\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{17\right\}\)

a) Do \(n\in N\)

\(\Rightarrow n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

c) \(\Rightarrow\left(n+1\right)+8⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow n\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)

d) \(\Rightarrow3\left(n+1\right)+18⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow\left(n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

\(\Rightarrow n\in\left\{0;1;2;5;8;17\right\}\)

e) \(\Rightarrow\left(n-2\right)+10⋮\left(n-2\right)\)

Do \(n\in N\Rightarrow\left(n-2\right)\inƯ\left(10\right)=\left\{-2;-1;1;2;5;10\right\}\)

\(\Rightarrow n\in\left\{0;1;3;4;7;12\right\}\)

f) \(\Rightarrow n\left(n+4\right)+11⋮\left(n+4\right)\)

Do \(n\in N\Rightarrow\left(n+4\right)\inƯ\left(11\right)=\left\{11\right\}\)

\(\Rightarrow n\in\left\{7\right\}\)

 

14 tháng 11 2021

 \(19:\left(n+2\right)\)

⇒ (n+2)∈Ư(19)=(1,19)

n+2            1               19

n               -1(L)           17(TM)

a: Để A là số nguyên thì n-21 chia hết cho n+10

=>n+10-31 chia hết cho n+10

=>n+10 thuộc {1;-1;31;-31}

=>n thuộc {-9;-11;21;-41}

b: Để B là số nguyên thì 3n+9 chia hết cho n-4

=>3n-12+21 chia hết cho n-4

=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}

=>n thuộc {5;3;7;1;11;-3;25;-17}

c: C nguyên

=>6n+5 chia hết cho 2n-1

=>6n-3+8 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}

mà n nguyên

nên 2n-1 thuộc {1;-1}

=>n thuộc {1;0}

1 tháng 11 2017

\(\left(n+9\right)⋮\left(n+4\right)\)

=> \(\left(n+9\right)-\left(n+4\right)⋮\left(n+4\right)\)

=> \(\left(n+9-n-4\right)⋮\left(n+4\right)\)

=> \(5⋮\left(n+4\right)\)

=> \(n+4\inƯ\left(5\right)=\left\{1;5\right\}\)

tó có bảng sau

n+4 1 5
n -3 loại

1

vậy x\(\in\left\{1\right\}\)