K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

a, xét tam giác BDM và tam giác CEM có:

              BM=CM(gt)

             \(\widehat{BMD}\)=\(\widehat{CME}\)(vì đối đỉnh)

\(\Rightarrow\)tam giác BDM=tam giác CEM( CH-GN)

b, xét tam giác BEM và tam giác CDM có

                    BM=CM

                   \(\widehat{CMD}\)=\(\widehat{BME}\)(đối đỉnh)

                   MD=ME(theo câu a)

\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CDM(c.g.c)

\(\Rightarrow\)\(\widehat{MCD}\)=\(\widehat{MBE}\) mà 2 góc này ở vị trí so le trong nên BE//CD

27 tháng 3 2019

c) Xét tam giác ABM có: MH vuông AB, BD vuông AM

Mà BD cắt MH tại I

=> I là trực tâm

Gọi J là giao của AI và BC khi đó:

AJ vuông BC

Xét 2 tam giác vuông AJM vàCEM có:

AM=MC(=1/2BC)( vì tam giác ABC vuông thì trung tuyến bằng 1/2 cạnh huyền)

góc IMA=góc EMC

=> Tam giác ẠM=tam giác CEM

=> \(\widehat{JAM}=\widehat{ECM}\) mặt khác  MA=MC=> tam giác MAC cân => \(\widehat{MAN}=\widehat{MCN}\)

từ đó suy ra \(\widehat{IAN}=\widehat{ECN}\)

Gọi K là giao điểm của AI và CE 

=> tam giác KAC cân

=> KA=KC

=> K nằm trên đường trung trực AC

Mặc khác MN là đường cao của tam giác cân MAC

=> MN là đường trung trực của AC

=> MN qua K

vậy MN, AI và CE đồng quy tại K

=> 

10 tháng 8 2019

A B C I D E F M N H P Q

Bổ đề: Xét tam giác ABC vuông tại A, đường phân giác trong AD. Khi đó \(\frac{1}{AC}+\frac{1}{AB}=\frac{\sqrt{2}}{AD}\).

Phép chứng minh bổ đề rất đơn giản (Gợi ý: Kẻ DH,DK lần lượt vuông góc với AB,AC)

Quay trở lại bài toán: Gọi \(r\) là bán kính của đường tròn (I)

Áp dụng Bổ đề vào \(\Delta\)NAM có \(\frac{1}{AM}+\frac{1}{AN}=\frac{\sqrt{2}}{AI}\)hay \(\frac{2}{AC}+\frac{1}{AN}=\frac{\sqrt{2}}{r\sqrt{2}}=\frac{1}{r}\)

Từ đó \(\frac{1}{AN}=\frac{AC-2r}{r.AC}\Rightarrow AN=\frac{r.AC}{AC-2r}\)  

Gọi AI cắt FD tại Q. Dễ thấy ^QDC = ^BDF = 900 - ^ABC/2 = 1/2(^BAC + ^ACB) = ^QIC

Suy ra tứ giác CIDQ nội tiếp => ^CQI = ^CDI = 900. Do đó \(\Delta\)AQC vuông cân tại Q

Từ đó, áp dụng hệ quả ĐL Thales, ta có: 

\(\frac{AP}{r}=\frac{AP}{ID}=\frac{QA}{QI}=1+\frac{AN}{QM}=1+\frac{2AN}{AC}\)

\(\Rightarrow AP=\frac{r.AC+2r.AN}{AC}=\frac{r.AC+2r.\frac{r.AC}{AC-2r}}{AC}=r+\frac{2r^2}{AC-2r}=\frac{r.AC}{AC-2r}=AN\)

Vậy nên \(\Delta\)ANP cân tại A (đpcm). 

11 tháng 8 2019

bn co cach nao ma ko can dung tu giac noi tiep ko

bạn lên hỏi đáp 247 mà hỏi chứ hỏi ở đây ko ai trả lời đâu

mình khuyên thật lòng đó nha !