PTĐTTNT:4x^2-25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b thì bạn kia làm đúng rồi nên mình chỉ giải câu a thôi nhé
\(3x^2+4x-7=\left(3x^2-3x\right)+\left(7x-7\right)\)
\(=\left(x-1\right)\left(3x+7\right)\)
a) = pp tìm nghiệm
= (x -1)( x +7/3)
b) = (2x-1)2 - 22
=(2x-1-2)(2x-1+2)
=(2x-3)(2x+1)
( ai cũng k hiu chi 1 vài ng gioi hiu)
Ta có tổng quát: \(\left(ax^2+bx+c\right)\)\(\left(mx^2+nx+p\right)\)\(\circledast\)
-Nhân ra ta được: \(amx^4+\left(an+bm\right)x^3+\left(ap+bn+cm\right)x^2+\left(bp+cn\right)x+cp\)
-Áp dụng phương pháp hệ số bất định, ta có:
am=1
an+bm=4 (1)
ap+bn+cm=6 (2)
bp+cn=4 (3)
cp=5
-Xét a=m=1 và c=1, p=5
thay vào (1), ta được: n+b=4 (4)
thay vào (3), ta được: n+5b=4 (5)
từ (4),(5)\(\Rightarrow\)n=4 và b=0
giờ thay tất cả vào phương trình (3), ta được: 5+0+1=6 (T/M)
\(\Rightarrow\)Thay vào\(\circledast\), ta được: \(\left(x^2+1\right)\left(x^2+4x+5\right)\)
Cách 2: Ta tách \(6x^2\) thành \(5x^2+x^2\)
ta được: \(x^4+4x^3+5x^2+x^2+4x+5\)
\(\Leftrightarrow x^2\left(x^2+4x+5\right)+\left(x^2+4x+5\right)\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+4x+5\right)\)
a) x4 - 4x2 + 4x - 1
= ( x2)2 - [ ( 2x)2 - 2.2x + 1]
= ( x2)2 - ( 2x - 1)2
= ( x2 - 2x +1)( x2 + 2x - 1)
= ( x -1)2( x2 + 2x - 1)
b) 4x2 - y2 + 4x + 1
= (2x)2 + 2.2x +1 - y2
= ( 2x +1)2 - y2
= ( 2x + 1 - y)( 2x + 1 + y)
\(\text{a) }x^4-4x^2+4x-1\\ \\=x^4-\left(4x^2-4x+1\right)\\ \\ =\left(x^2\right)^2-\left(2x-1\right)^2\\ \\=\left(x^2-2x+1\right)\left(x^2+2x-1\right)\\ \\=\left(x-1\right)^2\left(x^2+2x-1\right)\)
\(\text{b) }4x^2-y^2+4x+1\\ \\=\left(4x^2+4x+1\right)-y^2\\ \\=\left(2x+1\right)^2-y^2\\ \\=\left(2x+1+y\right)\left(2x+1-y\right)\)
a) Ta có: \(8x^2+30x+7\)
\(=8x^2+28x+2x+7\)
\(=4x\left(2x+7\right)+\left(2x+7\right)\)
\(=\left(2x+7\right)\left(4x+1\right)\)
b) Ta có: \(4x^3-12x^2+9x\)
\(=x\left(4x^2-12x+9\right)\)
\(=x\left(2x-3\right)^2\)
c) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=\left(x+2\right)\cdot3x\)
d) Ta có: \(ab+c^2-ac-bc\)
\(=\left(ab-bc\right)+\left(c^2-ac\right)\)
\(=b\left(a-c\right)+c\left(c-a\right)\)
\(=b\left(a-c\right)-c\left(a-c\right)\)
\(=\left(a-c\right)\left(b-c\right)\)
e) Ta có: \(4x^2-y^2+1-4x\)
\(=\left(4x^2-4x+1\right)-y^2\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1-y\right)\left(2x-1+y\right)\)
f) Ta có: \(6x^2-7x-20\)
\(=6x^2-15x+8x-20\)
\(=3x\left(2x-5\right)+4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(3x+4\right)\)
\(4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\), \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
\(ab+c^2-ac-bc=ab-ac-bc+c^2=a\left(b-c\right)-c\left(b-c\right)=\left(b-c\right)\left(a-c\right)\)
\(4x^2-y^2+1-4x=4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-y-1\right)\left(2x+y-1\right)\)
\(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(2x-5\right)\left(3x+4\right)\)
\(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(4x+1\right)\left(2x+7\right)\)
a/ \(x^4+4x^2-5\)
\(=\left(x^4+4x^2+4\right)-9\)
\(=\left(x^2+2\right)^2-9\)
\(=\left(x^2+2-3\right)\left(x^2+2+3\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
b/ \(5x^3-5x^2y-10x^2+10xy\)
\(=\left(5x^3-10x^2\right)-\left(5x^2y-10xy\right)\)
\(=5x^2\left(x-2\right)-5xy\left(x-2\right)\)
\(=\left(x-2\right)\left(5x^2-5xy\right)\)
\(=\left(x-2\right)5x\left(x-y\right)\)
\(4x^2-25=4x^2-5^2=\left(4x-5\right)\left(4x+5\right)\)
\(4x^2-25=\left(2x\right)^2-5^2=\left(2x-5\right)\left(2x+5\right)\)