Một người đi xe máy từ A đến B với vận tốc 40 km/ h. Lúc về người đó đi với vận tốc nhỏ hơn lúc đi 10 km/h nên thời gian về nhiều hơn thời gian đi là 45 phút. Tính chiều dài quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường AB là x(x>0)x(x>0)
Thời gian đi: x45x45
Thời gian về: x40x40
Đổi: 1010 phút=1616 giờ
Theo bài ra ta có phương trình:
x40−x45=16⇔270x−240x=1800⇔30x=1800⇔x=60 (thoả mãn)x40−x45=16⇔270x−240x=1800⇔30x=1800⇔x=60 (thoả mãn)
Vậy quãng đường dài: 60 km
Gọi quãng đường AB là x ( x > 0, km )
Thời gian người đó đi xe máy từ A -> B là : \(\frac{x}{45}\)giờ
Thời gian người đó đi từ B -> A là : \(\frac{x}{40}\)giờ
vì thời gian về nhiều hơn đi là 10 phút = \(\frac{1}{6}\)giờ
nên ta có phương trình : \(\frac{x}{40}-\frac{x}{45}=\frac{1}{6}\Leftrightarrow x=60\)
Vậy quãng đường AB là 60 km
đổi 45 phút = 34giờ
gọi x là quảng đường AB ( với x>0)
theo đề bài ta có:
x30−x40=34
⇒4x−3x=90
⇒x=90
vậy: SAB=90km
Đổi 45 phút = 3/4 giờ
Gọi độ dài quãng đường AB là x ( km ) ( x > 0 )
Ta có thời gian lúc xe máy đi từ A đấn B là : x / 40 giờ
Thời gian lúc xe máy đi về là : x / 40 giờ
Theo bài ra ta có phương trình như sau :
x / 30 - 3 / 4 = x / 40 <=> 4x / 120 - 3x / 120 = 3 / 4 <=> x = 120 . 3 / 4 = 90 ( thỏa mãn điều kiện đê bài )
=> Quãng đường AB dài 90 km
~ Học tốt ~
Gọi độ dài quãng đường AB là x(km)(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{45}\left(h\right)\)
Thời gian người đó đi từ B về A là: \(\dfrac{x}{50}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{45}-\dfrac{x}{50}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{10x}{450}-\dfrac{9x}{450}=\dfrac{180}{450}\)
\(\Leftrightarrow x=180\left(nhận\right)\)
Vậy: Độ dài quãng đường AB là 180km
Gọi độ dài quãng đường AB là x km (x>0)
Thời gian đi từ A đến B là: \(\dfrac{x}{12}\) giờ
Thời gian từ B về A là: \(\dfrac{x}{10}\) giờ
Do thời gian về nhiều hơn thời gian đi là 45 phút =3/4 giờ nên ta có pt:
\(\dfrac{x}{10}-\dfrac{x}{12}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x}{60}=\dfrac{3}{4}\)
\(\Leftrightarrow x=45\) (km)
Gọi độ dài quãng đường AB là x
Thời gian đi là x/40(h)
Thời gian về là x/35(h)
Theo đề, ta có: x/35-x/40=1/2
hay x=140
gọi độ dài quãng đường AB là x(km)(x>0)
độ dài quãng đường khác là x+15(km)
thời gian đi là: \(\frac{x}{30}\left(h\right)\)
thời gian về là:\(\frac{x+15}{40}\left(h\right)\)
theo đề bài: thời gian về ít hơn thời gian đi là 20 phút\(=\frac{1}{3}h\) nên ta có PT
\(\frac{x}{30}-\frac{x+15}{40}=\frac{1}{3}\)
\(\Leftrightarrow\frac{4x}{120}-\frac{3\left(x+15\right)}{120}=\frac{40}{120}\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=95\left(tmđk\right)\)
vậy đọ dài quãng đường AB là 95 km
Đổi: 20 phút = 1/3 h Gọi quãng đường AB là x (km) (x>0) Thời gian lúc đi là: x/30 (h) QĐ lúc về là: x + 15 (km) Thời gian lúc về là: (x + 15)/40 (h) Vì thời gian về ít hơn thời gian đi 20 phút nên ta có PT: x/30 - (x+15)/40 = 1/3 => ( x - 45)/120 = 1/3 => x - 45 = 40 => x = 85 (km) Vậy quãng đường AB dài 85 km
đổi 12 phút = 0,2 giờ
gọi độ dài quãng đường AB là: x (đơn vị:km,x>0)
=> thời gian mà xe máy đi từ A đến B là: `x/35` (giờ)
=> thời gian mà xe máy đi từ B đến A là: `x/40` (giờ)
vì thời gian về ít hơn thời gian đi 12 phút nên ta có phương trình sau
\(\dfrac{x}{35}-\dfrac{x}{40}=0,2\\ < =>x\cdot\left(\dfrac{1}{35}-\dfrac{1}{40}\right)=0,2\\ < =>x\cdot\dfrac{1}{280}=0,2\\ < =>x=56\left(tm\right)\)
vậy độ dài quãng đường AB là 56km
\(12p=0,2h\)
Gọi \(x\left(km\right)\) là quãng đường AB \(\left(x>0\right)\)
Theo bài, ta có pt :
\(\dfrac{x}{35}=\dfrac{x}{40}+0,2\)
\(\Leftrightarrow\dfrac{x}{35}-\dfrac{x}{40}-0,2=0\)
\(\Leftrightarrow\dfrac{40x-35x-280}{1400}=0\)
\(\Leftrightarrow5x=280\)
\(\Leftrightarrow x=56\left(tmdk\right)\)
Vậy quãng đường AB dài 56km
30 phút = (1/2) giờ
Gọi quãng đường AB là x (km). Điều kiện x > 0.
Thời gian xe máy đi từ A đến B là x/30 (giờ).
Thời gian xe máy đi từ B về A là x/24 (giờ).
Ta có phương trình:
⇔ 5x - 4x = 60 ⇔ x = 60 (thỏa mãn điều kiện)
Vậy quãng đường AB là 60 km.
Gọi độ dài quãng đường AB là x ( km, x>0 )
Thời gian xe máy đi từ A đến B = x/30 (giờ)
Vận tốc xe máy đi từ B về A = 30+10=40km/h
Thời gian xe máy đi từ B về A là x/40 (giờ)
Theo bài ra ta có phương trình :
x/30 - x/40 = 3/4
<=> x( 1/30 - 1/40 ) = 3/4
<=> x.1/120 = 3/4
<=> x = 90 (tm)
Vậy quãng đường AB dài 90km
Đổi \(45phút=\dfrac{3}{4}\left(h\right)\)
Gọi độ dài quãng đường AB là \(x\left(km,x>0\right)\)
Thì thời gian lúc đi từ A đến B là \(\dfrac{x}{40}\left(giờ\right)\)
Vận tốc lúc về là : \(40-10=30\) (km/h)
Thời gian lúc về là : \(\dfrac{x}{30}\left(h\right)\)
Vì thời gian lúc về nhiều hơn thời gian lúc đi \(\dfrac{3}{4}h\) nên ta có phương trình :
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\)
\(\Leftrightarrow4x-3x=90\)
\(x=90\left(nhận\right)\)
Vậy quãng đường AB là 90 km
Gọi độ dài quãng đường AB là x
Thời gian đi là x/40(h)
Thời gian về là x/30(h)
Theo đề, ta có: x/30-x/40=3/4
hay x=90