Chứng tỏ :\(\left(x+y\right)^2+\left(x-y\right)^2=2\left(x^2+y^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 1).(\(x^2\) + y) - (\(x^2\) - y).(x - 2) - x (x + 2y) + 3 (y - 5)
= \(x^3\) + xy \(-x^2\) - y \(-x^3\) + \(2x^2\) + xy - 2y \(-x^2\) - 2xy + 3y - 15
= \(x^3\) \(-x^3\) \(-x^2\) \(-x^2\) + \(2x^2\) - y - 2y + 3y + xy + xy - 2xy - 15
= -15
\(\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)
\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)
\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)
\(=-15\)
Vậy biểu thức trên không phụ thuộc vào biến
Mysterious Person, Phùng Khánh Linh, DƯƠNG PHAN KHÁNH DƯƠNG, Aki Tsuki, Yukru, Nhã Doanh, nguyễn viết hoàng, Dũng Nguyễn, Tạ Thị Diễm Quỳnh, Tuyen,Bùi Mạnh Khôi , Arakawa Whiter, TRẦN MINH HOÀNG,...
\(\left(x+y\right)^2+\left(x-y\right)^2=\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)=2\left(x^2+y^2\right)\)
Biến đổi vế trái ta được:
\(\left(x+y\right)^2+\left(x-y\right)^2\)\(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2\left(x^2+y^2\right)\)
Vậy đpcm