K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

\(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)

\(\Leftrightarrow2x^2-x-10-2x^2+2x-15=0\)

\(\Leftrightarrow x=25\)

9 tháng 7 2016

\(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)

\(2x^2+4x-5x-10-2x^2+2=15\)

\(\left(2x^2-2x\right)+\left(4x-5x\right)-\left(10-2\right)=15\)

\(-x-8=15\)

\(-x=15+8=23\)

\(x=23\)

Vậy \(x=23\)

28 tháng 10 2018

Ta có:

\(a)\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)

\(\Leftrightarrow\left(2x^2-x-10\right)-\left(2x^2-2x\right)=15\Leftrightarrow x-10=15\)

\(\Leftrightarrow x=25\)

\(b)\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)=\left(2x-5\right)\left(2x+5\right)\)

\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)

\(5-2x=0\Leftrightarrow x=\frac{5}{2}\)

\(4x+12=0\Leftrightarrow x=-3\)

Vậy ..........................................

16 tháng 12 2022

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

16 tháng 12 2022

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

4 tháng 7 2016

a) \(\left(2x-1\right)\left(2x+1\right)-4x^2=3\Leftrightarrow\left(4x^2-1\right)-4x^2=3\Rightarrow-1=3\) (không đúng)

Tí làm tiếp nhé ;) h đi chơi đã

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)

b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)

\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)

\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)

\(\Leftrightarrow x\left(6-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: S={0;6}

c) Ta có: \(3x-15=2x\left(x-5\right)\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)

d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)

\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)

\(\Leftrightarrow30-6x=6x-8\)

\(\Leftrightarrow30-6x-6x+8=0\)

\(\Leftrightarrow-12x+38=0\)

\(\Leftrightarrow-12x=-38\)

\(\Leftrightarrow x=\dfrac{19}{6}\)

Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)

e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)

\(\Leftrightarrow6x+4-3x-1=12x+10\)

\(\Leftrightarrow3x+3-12x-10=0\)

\(\Leftrightarrow-9x-7=0\)

\(\Leftrightarrow-9x=7\)

\(\Leftrightarrow x=-\dfrac{7}{9}\)

Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)

11 tháng 9 2020

a, \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Leftrightarrow x^2+8x+16-\left(x^2-x+x-1\right)=16\)

\(\Leftrightarrow8x+1=0\Leftrightarrow x=-\frac{1}{8}\)

b, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{225}{2}\)

11 tháng 9 2020

c, \(\left(x+2\right)\left(x-2\right)-x^3-2x=15\)

\(\Leftrightarrow x^2-4-x^3-2x=15\)( vô nghiệm )

d, \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3+1=28\)

\(\Leftrightarrow15x^2+26=0\Leftrightarrow x^2\ne-\frac{26}{15}\)( vô nghiệm )

Tính nhẩm hết á, sai bỏ quá nhá, sắp đi hc ... nên chất lượng hơi kém xíu ~~~ 

24 tháng 7 2023

a) \(x-2=\left(x-2\right)^2\)

\(\left(x-2\right)^2-\left(x-2\right)=0\)

\(\left(x-2\right)\left(x-2-1\right)=0\)

\(\left(x-2\right)\left(x-3\right)=0\)

\(\Rightarrow x-2=0\) hoặc \(x-3=0\)

*) \(x-2=0\)

\(x=2\)

*) \(x-3=0\)

\(x=3\)

Vậy \(x=2;x=3\)

b) \(x+5=2\left(x+5\right)^2\)

\(2\left(x+5\right)^2-\left(x+5\right)=0\)

\(\left(x+5\right)\left[2\left(x+5\right)-1\right]=0\)

\(\left(x+5\right)\left(2x+10-1\right)=0\)

\(\left(x+5\right)\left(2x+9\right)=0\)

\(\Rightarrow x+5=0\) hoặc \(2x+9=0\)

*) \(x+5=0\)

\(x=-5\)

*) \(2x+9=0\)

\(2x=-9\)

\(x=-\dfrac{9}{2}\)

Vậy \(x=-5;x=-\dfrac{9}{2}\)

c) \(\left(x^2+1\right)\left(2x-1\right)+2x=1\)

\(\left(x^2+1\right)\left(2x-1\right)+2x-1=0\)

\(\left(x^2+1\right)\left(2x-1\right)+\left(2x-1\right)=0\)

\(\left(2x-1\right)\left(x^2+1+1\right)=0\)

\(\left(2x-1\right)\left(x^2+2\right)=0\)

\(\Rightarrow2x-1=0\) hoặc \(x^2+2=0\)

*) \(2x-1=0\)

\(2x=1\)

\(x=\dfrac{1}{2}\)

*) \(x^2+2=0\) 

\(x^2=-2\) (vô lí)

Vậy \(x=\dfrac{1}{2}\)

d) Sửa đề:

\(\left(x^2+3\right)\left(x+1\right)+x=-1\)

\(\left(x^2+3\right)\left(x+1\right)+\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^2+3+1\right)=0\)

\(\left(x+1\right)\left(x^2+4\right)=0\)

\(\Rightarrow x+1=0\) hoặc \(x^2+4=0\)

*) \(x+1=0\)

\(x=-1\)

*) \(x^2+4=0\)

\(x^2=-4\) (vô lí)

Vậy \(x=-1\)