Cho Δ ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và đường thẳng DH cắt đường thẳng AB tại K. Chứng minh
a) Δ ABD = ΔHBD
b) DK = DC
c) Tam giác KBC là tam giác cân
làm giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔABD=ΔHBD
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔADK=ΔHDC
Suy ra: DK=DC
c: Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
gócHBK chung
=>ΔBHK=ΔBAC
=>BK=BC
c: ΔBKC cân tại B
mà BM là trung tuyến
nên BM là phân giác
=>B,D,M thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
c: ΔBKC cân tại B
mà BM là trung tuyến
nên BM là phân giác của góc ABC
=>B,D,M thẳng hàng
a) Sửa lại đề cho hợp lí nha, phải là AD=DH
Xét tg BAD và BHD có :
BD-chung
\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)
\(\widehat{BAC}=\widehat{BHD}=90^o\)
=> Tg BAD=BHD(cạnh huyền-góc nhọn)
=> AD=HD (đccm)
b) Xét tg DHC vuông tại H có : HD<CD (cạnh góc vuông luôn nhỏ hơn cạnh huyền)
Mà HD=DA
=>DA<CD
c)Gọi giao điểm của BD và KC là I
Xét tg KBC có :
=> BI là đường cao thứ 3 của tg KBC
- Xét tg BIK và BIC có :
BI-chung
\(\widehat{KBI}=\widehat{CBI}\left(gt\right)\)
\(\widehat{BIK}=\widehat{BIC}=90^o\)(BI là đường cao tg BCK)
=> Tg BIK=BIC (g.c.g)
=> BK=KC
=> Tg BCK cân tại B (đccm)
#H
a) Xét Δ ADB vuông và ΔBHD vuông có:
BD là cạnh chung
∠ ABD = ∠ HBD ( do BD là tia phân giác của ∠ BAC, H ∈ BC )
Do đó: Δ ADB = Δ BHD( ch - gn )
⇒ AD = DH ( hai cạnh tương ứng )
b) Xét Δ ADK và Δ HDC có
AD=DH ( cmt )
∠ ADK = ∠ HDC ( đối đỉnh )
Vậy: Δ ADK = Δ HDC ( cgv - gn )
⇒ AD = DC ( 2 cạnh tương ứng )
c) Ta có: BK = BA + AK ( do B,A,K thẳng hàng )
BC = BH + HC ( do B,H,C thẳng hàng )
mà BA = BH ( Δ BAD = ΔBHD)
và AK = HC ( Δ ADK = ΔHDC )
⇒ BK = BC ( 1 )
Xét Δ KBC có BK = BC ( cmt ) ( 2 )
Từ ( 1 ) và ( 2 ): ⇒ KBC cân tại B ( định nghĩa tam giác cân )
a: Xet ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔABD=ΔHBD
b: BA=BH
DA=DH
=>BD là trung trực của AH
c: Xét ΔADK và ΔHDC có
DA=DH
góc ADK=góc HDC
DK=DC
=>ΔADK=ΔHDC
=>góc DAK=góc DHC=90 độ
=>góc BAK=90+90=180 độ
=>B,A,K thẳng hàng
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
a, Xét \(\Delta ABD\perp A\)và \(\Delta HBD\perp H\)có :
\(BD\)chung
\(\widehat{B_1}=\widehat{B_2}\)( gt )
= > \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
b, \(\Delta ABD=\Delta HBD\)( câu a, )
= > AD = HD ( 2 cạnh tương ứng )
Xét \(\Delta DAK\perp A\)và \(\Delta DHC\perp H\)có :
AD = HD ( cmt )
\(\widehat{ADK}=\widehat{HDC}\)( 2 góc đối đỉnh )
= > \(\Delta DAK=\Delta DHC\left(cgv-gn\right)\)
= > DK = DC ( 2 cạnh tương ứng )
c, \(\Delta DAK=\Delta DHC\)( câu b, )
= > AK = HC ( 2 cạnh tương ứng )
\(\Delta ABD=\Delta HBD\)( câu a, )
= > AB = HB ( 2 cạnh tương ứng )
\(A\in BK\)
= > AB + AK = BK ( 1 )
\(H\in BC\)
= > HB + HC = BC ( 2 )
Từ ( 1 ) và ( 2 ) = > BK = BC
Xét \(\Delta KBC\)có :
BK = BC
= > \(\Delta KBC\)cân tại B
CÂU TRẢ LỜI CỦA BẠN LÀ SAI
ĐỌC TIẾP
BÀI'
THỊT GÀ 258 YÊN. ' 1!'?