K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

2x+2+2x=96

=>2x(22+1)=96

=>2x.5=96

=>2x=\(\frac{96}{5}\)

Sai đề rồi

8 tháng 7 2016

2x22-2x=96

2x(4-1)=96

2x=96:3

2x=32

2x=25(vì 32=2^5)

=>x=5

17 tháng 9 2016

\(x+2x+3x+...+100x=2200\)

=>\(x\left(1+2+3+...+100\right)=2200\)

=>\(x.\frac{100.101}{2}=2200\)

=>\(x.5050=2200\)

=>x=2200:5050

=>x=\(\frac{44}{101}\)

17 tháng 9 2016

\(x+2x+3x+...+100x=220\)

\(\Rightarrow x\left(1+2+3+....+100\right)=2200\)

\(\Rightarrow5050x=2200\)

\(\Rightarrow x=\frac{44}{101}\)

13 tháng 2 2017

em ko biết trình bày vì mình mới lớp 5 nên hãy dùng máy tính bỏ túi và em ra X bằng 7 ! Sai thi đừng bảo em nhé!

13 tháng 2 2017

Xin lỗi em, chị k thể được vì muốn  thì em phải làm được hết các thao tác như bên trên chị nói

20 tháng 10 2015

\(\frac{2}{8x-4x^2-5}\)

Xét mẫu:    \(8x-4x^2-5=-4x^2+8x-4-1=-\left(4x^2-8x+4\right)-1=-\left(2x-2\right)^2-1\)

 \(-\left(2x-2\right)^2\le0\Rightarrow-\left(2x-2\right)^2-1\le-1\)

 Nên  \(\frac{2}{8x-4x^2-5}\le\frac{2}{-1}\le-2\)

Vậy giá trị lớn nhất của \(\frac{2}{8x-4x^2-5}\)-2

21 tháng 2 2017

ban choi bang bang cho minh nick

21 tháng 2 2017

Mình không chơi

12 tháng 4 2018

a/ Ta có \(C\left(x\right)=2x^2+18x\)

Khi C (x) = 0

=> \(2x^2+18x=0\)

=> \(2x\left(x+9\right)=0\)

=> \(\orbr{\begin{cases}2x=0\\x+9=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-9\end{cases}}\)

Vậy C (x) có 2 nghiệm: x1 = 0; x2 = -9.

28 tháng 7 2023

\(\left(x+2\right)^2=\left(2x-1\right)^2\\ \Leftrightarrow\left(x+2\right)^2-\left(2x-1\right)^2=0\\\Leftrightarrow\left[x+2-\left(2x-1\right)\right]\left[x+2+2x-1\right]=0\\ \Leftrightarrow\left(x+2-2x+1\right)\left(x+2+2x-1\right)=0\\ \Leftrightarrow\left(-x+3\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x+3=0\\3x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=-3\\3x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)

28 tháng 7 2023

\(\left(x+2\right)^2=\left(2x-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-1\\x+2=-\left(2x-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2x=-1-2\\x+2=-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=-3\\x+2x=1-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)