cho M=(x2-1/x^4-x2+1 - 1/x2+1)*(x4+ 1-x4/1+x2)
a) rút gọn M
b)tìm giá trị nhỏ nhất của M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2=1+xy\Rightarrow x^2+y^2-xy=1\)
Ta có: \(1+xy=x^2+y^2\ge2xy\Rightarrow xy\le1\)
\(1+xy=x^2+y^2\ge-2xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(P=\left(x^2+y^2\right)^2-x^2y^2-2x^2y^2=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)-2x^2y^2\)
\(=x^2+y^2+xy-2x^2y^2=-2x^2y^2+2xy+1\)
Đặt \(a=xy\Rightarrow P=f\left(a\right)=-2a^2+2a+1\)
Xét hàm \(f\left(a\right)=-2a^2+2a+1\) trên \(\left[-\dfrac{1}{3};1\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[-\dfrac{1}{3};1\right]\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow M=\dfrac{3}{2}\) ; \(m=\dfrac{1}{9}\) \(\Rightarrow Mm=\dfrac{1}{6}\)
Ta có: x 2 | x 2 − 2| = m
⇔ 2 x 2 | x 2 − 2| = 2m
⇔|2 x 2 ( x 2 − 2)| = 2m
⇔|2 x 4 − 4 x 2 | = 2m
Từ đồ thị hàm số y = 2 x 4 – 4 x 2 có thể suy ra đồ thị của hàm số y = |2 x 4 − 4 x 2 | như sau:
Phương trình: |2 x 4 − 4 x 2 | = 2m có 6 nghiệm phân biệt khi và chỉ khi đường thẳng y = 2m có 6 nghiệm phân biệt với đồ thị (H)
⇔ 0 < 2m < 2
⇔ 0 < m < 1