Cho tam giác OMN vuông tại O. Lấy điểm P trên cạnh OM, điểm Q trên cạnh ON. Chứng minh PQ < MQ < MN? (Giải chi tiết)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác OMN vuông tại O. Lấy điểm P trên cạnh OM, điểm Q trên cạnh ON. Chứng minh PQ < MQ < MN?
+) Xét △MOQ có: \(\left\{{}\begin{matrix}\hat{O}=90^o\\OP< OM\left(P\in OM\right)\end{matrix}\right.\)
\(\Rightarrow PQ< MQ\left(a\right)\)
+) Lại xét △MON có: \(\left\{{}\begin{matrix}\hat{O}=90^o\\OQ< ON\left(Q\in ON\right)\end{matrix}\right.\)
\(\Rightarrow MQ< MN\left(b\right)\)
Từ (a) và (b). Vậy: \(PQ< MQ< MN\left(đpcm\right)\)
(Xem lại lý thuyết:
Toán 7, tập 2 - Phần Hình học: Chương III: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu • Định lí 2).
#Z
a) Xét tam giác OBC cân tại O có:
OA là trung tuyến (A là trung điểm BC)
=> OA là đường cao (TC các đường trong tam giác cân)
=> OA vuông góc BC (đpcm)
b) Xét tam giác OBC cân tại O có:
OA là trung tuyến (A là trung điểm BC)
=> OA là đường phân giác ^A (TC các đường trong tam giác cân)
Xét tam giác OMN có: OM = ON (gt)
=> Tam giác OMN cân tại O
Mà OA là đường phân giác ^A (cmt)
=> OA là đường cao (TC các đường trong tam giác cân)
=> OA vuông góc MN
Mà OA vuông góc BC (cmt)
=> MN // BC (Từ vuông góc đến //)