Giúp mình câu này với
Tìm GTLN của biểu thức sau
A= -/x - \(\frac{1}{2}\)/+(y+1)2 - 5
Mình xin nói thêm cái /x-\(\frac{1}{2}\)/ chính là giá trị tuyệt đối.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tiếp tục:\(-A=\frac{x^3+y^3+z^3}{2xyz}\)
thay(1) vào A ta có
\(-A=\frac{y^3+z^3-\left(y+z\right)^3}{2xyz}=\frac{y^3+z^3-y^3-z^3-3yz\left(y+z\right)}{2xyz}\)
\(-A=\frac{3xyz}{2xyz}=\frac{3}{2}\Rightarrow A=\frac{-3}{2}\)
P/s tham khảo bài mình nhé nhớ
ta có:\(x+y+z=0\) \(\Rightarrow x=-\left(y+z\right)\)
\(\Rightarrow x^3=-\left(y+z\right)^3\left(1\right)\)\(;x^2=\left(y+z\right)^2\)
\(\Rightarrow y^2+z^2-x^2=-2yz\)
CMTT:\(z^2+x^2-y^2=-2xz;x^2+y^2-z^2=-2xy\)
thay vào A ta có:
\(A=\frac{-x^2}{2yz}+\frac{-y^2}{2xz}+\frac{-z^2}{2xy}\)
Câu 1:
Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)
Thật vậy,điều cần c/m \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)
Vậy BĐT phụ (Cô si) là đúng.
----------------------------------------------------------
Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)
Do đó:
\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
GTLN A = -5
khi x = 1/2 ; y = -1