Cho O thuộc đoạn AB . Trên cùng nửa mặt phẳng bờ AB kẻ 2 tia Ox và Oy sao cho góc Aox = góc BOy < 90 độ
lấy C thuộc Ox , D thuộc Oy sao cho OC = OA , OD = OB chứng minh AD = BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ADO\)và \(\Delta CBO\)có :
\(OD=OB\left(gt\right)\)
\(OA=OC\left(gt\right)\)
\(\widehat{AOx}=\widehat{BOy}\left(gt\right)\)
\(\Rightarrow\) Hai tam giác trên bằng nhau
\(\Rightarrow AD=BC\) ( 2 cạnh tương ứng )
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{O}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
\(a,\left\{{}\begin{matrix}OA=OC\\OD=OB\\\widehat{AOB}\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\\ \Rightarrow AD=BC\\ b,\Delta AOD=\Delta COB\\ \Rightarrow\widehat{ADO}=\widehat{CBO};\widehat{OAD}=\widehat{OCB}\\ \Rightarrow180^0-\widehat{OAD}=180^0-\widehat{OCB}\\ \Rightarrow\widehat{ECD}=\widehat{EAB}\\ \text{Ta có}\left\{{}\begin{matrix}OA=OC\\OD=OB\end{matrix}\right.\Rightarrow CD=OD-OC=OB-OA=AB\\ \left\{{}\begin{matrix}AB=CD\\\widehat{ADO}=\widehat{CBO}\\\widehat{ECD}=\widehat{EAB}\end{matrix}\right.\Rightarrow\Delta EAB=\Delta ECD\left(g.c.g\right)\)
ΔOAD và ΔOCB có:
OA = OC (gt)
Góc O chung
OD = OB (gt)
⇒ ΔOAD = ΔOCB (c.g.c)
⇒ AD = BC (hai cạnh tương ứng).
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{O}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=CB
Xét tam giác ODB và tam giác OAC có: OD = OA
góc AOC = góc BOD (=90o)
OB = OC
=> tam giác ODB = tam giác OAC (c.g.c)=> AC = BD (2 cạnh t,ư )
b/Ta có góc DOC + COB = zOx = 90o
AOB + BOC = tOy = 90o
=> góc DOC = AOB mà OD =OA, OC = OB
=> tam giác ODC = OAB (c.g.c) => DC = AB (1)
Dễ có tam giác DCB = ABC (Vì BC chung, DC=AB,DB =AC )
=> góc CDB = CAB (2 góc t.ư) (2)
Dễ có tam giác CDA = BAD (vì AD chung, CD = AB, DB =AC ) => góc DCA = góc DBA (2 góc t.ư) (3)
Từ (1)(2)(3) => tam giác IDC =IAB (g.c.g)
=> ID = IA, IC = IB (cặp canh tương ứng )
Dễ có tam giác OIC = OIB (c.c.c)
=> góc COI = góc BOI (2 góc t.ư)
=> tia OI là phân giác của góc xOy
a
xét tam giác AOD và BCD có:
góc D chung,OB=OA,OC=OD
=>tam giác AOD=BCD=>BC=AD
vì OC+CA=OA,OD+DB=OB mà OC=OD,OA=OB
=>AC=BD
xét tam giác ADB và BCA có:
AC=BD,AB chung,BC=AD
=>ADB=BCA
b
xét tam giác OIA và OIB có
OA=OB,OI chung,IA=IB
=>tam giác OIA=OIB=>góc AOI=góc BOI=>OI là phân giác góc xOy