K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2021

Giúp mik với

b) Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔBAE=ΔBHE(Cạnh huyền-góc nhọn)

Suy ra: EA=EH(hai cạnh tương ứng)(1)

Ta có: ΔEHC vuông tại H(gt)

nên EC là cạnh huyền

Suy ra: EC là cạnh lớn nhất trong ΔECH(Định lí)

hay EC>EH(2)

Từ (1) và (2) suy ra EC>AE(Đpcm)

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔABE=ΔHBE

b: góc HEC+góc AEH=180 độ

góc AEH+góc ABH=180 độ

=>góc HEC=góc ABH=2*góc ABE

c: AE=EH

EH<EC

=>AE<EC

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: Ta có: \(\widehat{HEC}+\widehat{AEH}=180^0\)

\(\widehat{AEH}+\widehat{ABH}=180^0\)

Do đó: \(\widehat{HEC}=\widehat{ABH}\)

hay \(\widehat{HEC}=2\cdot\widehat{ABE}\)

c: Ta có: EA=EH

mà EH<EC
nên EA<EC

29 tháng 4 2017

A B C E H K

a) Xét tam giác vuông ABE và tam giác vuông HBE có:

EB là cạnh chung; góc ABE=góc HBE (do BE là tia phân giác góc ABC)

=>tam giác vuông ABE=tam giác vuông HBE (cạnh huyền-góc nhọn)

b) Trong tam giác vuông cạnh huyền là cạnh lớn nhất => Trong tam giác vuông HEC cạnh EC lớn nhất

=>HE<EC mà AE=HE (do \(\Delta ABE=\Delta HBE\) mà AE và HE là 2 cạnh tương ứng)

=>AE<EC

c) Trong tam giác vuông, 2 góc nhọn phụ nhau => góc ABC+góc ACB=90o; góc HCE+góc HEC=90o

=>góc ABC+góc ACB=góc HCE+góc HEC => góc ABC=góc HEC

mà góc HEC=góc AEK (2 góc đối đỉnh) => góc ABC=góc AEK

Mặt khác góc ABE=góc EBC (do \(\Delta ABE=\Delta HBE\) mà AE và HE là 2 góc tương ứng)

=>góc ABC=góc ABE+góc EBC=\(2.\widehat{ABE}\) => góc AEK=\(2.\widehat{ABE}\)

17 tháng 4 2018

mình chỉ biết chứng minh phần a thui,mong bạn thông cảm nha

a)xét tam giác ABE và tam giác HBE có

góc BAE= góc BHE(= 90 độ)

cạnh BE chung

góc ABE= góc HBE(giả thiết)

=>tam giác ABE = tam giác HBE(c/h-g/n)(đpcm)

28 tháng 4 2016

hình tự vẽ:

a)Vì BE là tpg của ^ABC(gt)

=>^ABE=^EBH(=^EBC)

Xét tam giác ABE vuông ở A và tam giác HBE vuông ở H có:

BE:cạnh chung

^ABE=^EBH(cmt)

=>tam giác ABE=tam giác HBE(ch-gn)

b)Vì tam giác ABE=tam giác HBE(cmt)

=>AB=HB(cặp cạnh t.ư)

Xét tam giác ABH có:AB=HB(cmt)

=>tam giác ABH cân ở B(DHNB0

Xét tam giác ABH cân ở B có:AE là tpg của ^ABH(vì AE là tpg của ^ABC)

=>BE là đg trung trực của AH (t/c tam giác cân)

c)Vì tam giác ABE=tam giác HBE(cmt)

=>AE=HE(cặp cạnh t.ư)

Ta có:EC>EH (trong tam giác vuông,cạnh huyền là cạnh lớn nhất)

Mà AE=HE(cmt)

=>EC>AE

16 tháng 1 2017

làm bài rất tốt ! vuithanghoaokhahayeuyeu

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có 

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

Suy ra: BA=BH(hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)

Xét ΔAEK vuông tại A và ΔHEC vuông tại H có 

EA=EH(cmt)

\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)

Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)

Suy ra: EK=EC(hai cạnh tương ứng) và AK=HC(Hai cạnh tương ứng)

Ta có: BK=BA+AK

BC=BH+HC

mà BA=BH(cmt)

và AK=HC(cmt)

nên BK=BC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EK=EC(cmt)

nên E nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của KC

hay BE\(\perp\)KC

b) Ta có: EA=EH(cmt)

mà EH<EC

nên EA<EC