(1-1/3)x(1-1/6)x...(1-1/780)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = \(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right)...\left(1-\frac{1}{780}\right)\)
= \(\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{779}{780}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{1558}{1560}=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{38.41}{39.40}=\frac{\left(1.2.3...38\right).\left(4.5.6...41\right)}{\left(2.3.4...39\right).\left(3.4.5...40\right)}\)
= \(\frac{1.41}{39.3}=\frac{41}{117}\)
(1-1/3).(1-1/6).(1-1/10)...(1-1/780) (ko có dấu "...")
Giải: (1-1/3).(1-1/6).(1-1/10)...(1-1/780)
= 2/3 . 5/6....779/780
= 4/6 . 10/12.....1558/1560
= 1.4 . 2.5 .... 38.41/ 2.3 . 3. 4. .....39.40
= ( 1.2.3....38).(4.5....41)/(2.3.4....39)(3...
triệt tiêu xong còn 41/39.3= 41/117
ĐS = 41/117
\(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right).\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{780}\right).a=1\)
=> \(\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{779}{780}.a=1\)
=> \(\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{1558}{1560}.a=1\)
=> \(\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...\frac{38.41}{39.40}.a=1\)
=> \(\frac{1.2.3.4...38}{2.3.4.5...39}.\frac{4.5.6.7...41}{3.4.5.6...40}.a=1\)
=> \(\frac{1}{39}.\frac{41}{3}.a=1\)
=> \(\frac{41}{117}.a=1\)
=> \(a=1:\frac{41}{117}=\frac{117}{41}\)