Rút gọn phân thức A= \(\frac{\left(a+2\right)^2\left(5a-15a^2\right)}{\left(a-3\right)\left(4a-a^3\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5a^2\left(a+b\right)^3}{10a\left(a+b\right)^2}=\dfrac{a\left(a+b\right)}{2}\)
\(\dfrac{5a^2\left(a+b\right)^3}{10a\left(a+b\right)^2}=\dfrac{a\left(a+b\right)}{2}\)
Phân tích mẫu thức thành nhân tử :
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+ac^2-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)
\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right).\)
Do đó : \(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Nhận xét : Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz.\)
Đặt \(b-c=x,c-a=y,a-b=z\) thì \(x+y+z=0\)
Theo nhận xét trên : \(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3.\)
Tử:
(b - c)3 + (c - a)3 + (a - b)3
= (b - c + c - a + a - b)3 - 3(b - c + c - a)(b - c + a - b)(c - a + a - b)
= 0 - 3(b - a)(a - c)(c - b)
= 3(a - b)(a - c)(c - b)
Mẫu:
a2(b - c) + b2(c - a) + c2(a - b)
= a2(b - c) + b2c - ab2 + ac2 - bc2
= a2(b - c) - a(b2 - c2) + bc(b - c)
= a2(b - c) - a(b - c)(b + c) + bc(b - c)
= (b - c)(a2 - ab - ac + bc)
= (b - c)[a(a - b) - c(a - b)]
= (b - c)(a - b)(a - c)
\(A=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}\)
\(=\frac{3\left(c-b\right)}{b-c}\)
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
Phân tích mẫu \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-c^2b\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)=-\left(b-c\right)\left(a-b\right)\left(c-a\right)\)
Đặt b - c = x, c - a = y, a - b = z
=> x + y + z = b - c + c - a + a - b = 0
Từ x+y+z=0 => x3+y3+z3=3xyz (tự c/m)
=>\(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3\)
a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)
\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)
\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)
\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)
\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)
b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)
\(=4-\frac{16}{a^2+4}\)
Để M đạt giá trị lớn nhất
\(\Leftrightarrow\frac{16}{a^2+4}\)min
\(\Leftrightarrow a^2+4\)max
\(\Leftrightarrow a\)max
Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.
\(A=\frac{\left(a+2\right)^2\left(5a-15a^2\right)}{\left(a-3\right)\left(4a-a^3\right)}=\frac{\left(a+2\right)^2.5a.\left(1-3a\right)}{\left(a-3\right).a.\left(2-a\right)\left(a+2\right)}\)
\(=\frac{\left(a+2\right).5.\left(1-3a\right)}{\left(a-3\right).\left(2-a\right)}\)