K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Theo bài ra ta cần chứng minh tổng \(1+3+5+7+....+\left(2n-1\right)\) là SCP

Thật vậy,từ 1-> 2n-1 có: \(\frac{\left(2n-1\right)-1}{2}+1=\frac{2n-2}{2}+1=\frac{2n-2+2}{2}=\frac{2n}{2}=n\) (số hạng)

\(=>1+3+5+7+...+\left(2n-1\right)=\frac{\left(2n-1+1\right).n}{2}=\frac{2n.n}{2}=n^2\) là 1 SCP

Vậy ta có đpcm

6 tháng 7 2016

Ta có tổng các số lẻ liên tiếp từ 1 là: 1 + 3 + 5 + 7 + ... + 2n - 1

Số số hạng là:

( 2n - 1 - 1 ) : 2 + 1 = n

Vậy tổng là:

( 2n - 1 + 1 ) . n : 2 = 2n.n : 2 = n2 ( đpcm )

1 tháng 11 2016

Gọi dãy số lẻ liên tiếp là \(1;3;5;...;2k+1\)trong đó \(k\in N\)*.

Số các số hạng :

\(\frac{\left(2k+1\right)-1}{2}+1=\frac{2k}{2}+1=k+1\)(số )

Tổng là :

\(\frac{\left(k+1\right)\left[1+\left(2k+1\right)\right]}{2}\)

\(=\frac{\left(k+1\right)\left(2k+2\right)}{2}\)

\(=\left(k+1\right).\frac{2\left(k+1\right)}{2}\)

\(=\left(k+1\right)^2\)

Vậy ...

7 tháng 10 2018

Khoảng cách giữa 2 số lẻ liên tiếp là 2

Số lẻ đầu tiên là 1 thì số lẻ thứ n là:

             \(1+\left(n-1\right).2=2n-1\)

Khi đó: tổng n STN lẻ liên tiếp kể từ 1 là:

      \(1+3+5+...+\left(2n-1\right)\)

\(=\left(1+2n-1\right).n:2\)

\(=2n^2:2=n^2\)

Vậy tổng của n STN lẻ liên tiếp là số chính phương.

Chúc em học tốt.

4 tháng 3 2022

mày lớp mấy

4 tháng 3 2022

\(a)\) \(Thay\) \(x=2\) \(\text{ vào }\)\(PT:\)

\(2m-3=2m-2-1.\\ \Leftrightarrow2m-3-2m+2+1=0.\)

\(\Leftrightarrow0=0\) (luôn đúng).

\(\Rightarrow\) PT luôn nhận x = 2 làm nghiệm với mọi giá trị của m.

5 tháng 2 2020

gọi 2 số chính phương liên tiếp là k^2 và (k + 1)^2

theo đề bài ta có : 

k^2 + (k+1)^2 + k^2(k+1)^2 

= k^2 + k^2 + 2k + 1 + k^2(k^2 + 2k + 1)

= 2k^2 + 2k + 1 + k^4 + 2k^3 + k^2

= k^4 + 2k^3 + 3k^2 + 2k + 1

= k^4 + k^2 + 1 + 2k^3 + 2k^2  + 2k 

= (k^2 + k + 1)^2

= [k(k+1)+1]^2

k(k+1) chia hết cho 2 (2 số tự nhiên liên tiếp) => k(k+1) +1 lẻ

=> [k(k+1)+1)^2 là số chính phương lẻ

5 tháng 2 2020

Giả sử hai số chính phương liên tiếp đó là \(a^2,\left(a+1\right)^2\)

Ta có : \(a^2+\left(a+1\right)^2+a.\left(a+1\right)\)

\(=a^2+a^2+2a+1+a^2+a\)

\(=3a^2+3a+1\)

.....

8 tháng 8 2016

Gọi 2 số lẻ liên tiếp là 2k−1 và 2k+1, với k là số tự nhiên.

Tổng các bình phương của hai số lẻ liên tiếp là: (2k−1)2+(2k+1)2=4k2−4k+1+4k2−4k+1=8k2+2

Tổng trên chia cho 4 dư 2; Vậy nó không thể là số chính phương (Số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1)

30 tháng 3 2017

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m\(\in\)N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương .

19 tháng 7 2016

đây là câu hỏi trong chuyên đề SCP ở HỌC BÀI mà

19 tháng 7 2016

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

K nhak ^_^ ^_^ ^_^