K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2021

B= (x-1).(x-2)....(x-35)

Thay x=34 vào B, ta được:

B=(34-1).(34-2).....(23-34).(34-35)

B= 0

Vậy B=0

24 tháng 3 2021

Theo quy luật trên, trong biểu thức $B$ sẽ có nhân tử $(x-34)$

Mà với $x=34⇒x-34=0$

Nên $B=(x-1)(x-2)(x-3).....(x-34)(x-35)=(x-1).(x-2).(x-3).....0.(x-35)=0$

Vậy $B=0$

24 tháng 3 2021

B= (X-1).(X-2).(X-3). ... .(X-34).(X-35) tại X = 34

B= (34-1).(34-2).(34-3)....(34-34).(34-35)

B= 33.32.31. ... .0.(-1)

B=0 

13 tháng 10 2021
Lấy 1 -1 2
18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

Ta có: x=2018

nên x+1=2019

Ta có: \(A=x^5-2019x^4+2019x^3-2019x^2+2019x-2020\)

\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2020\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)

\(=x-2020=2019-2020=-1\)

24 tháng 12 2021

a) điều kiện xác định: x≠3 và x≠2

b) \(\dfrac{x^2-4}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{x+2}{x-3}\)

Tại x=13 ta có \(\dfrac{13+2}{13-3}\)=\(\dfrac{3}{2}\)

 

4 tháng 7 2018

\(a,P=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+1\)

\(=\left(x^2+5x+5\right)^2-1+1\)

\(=\left(x^2+5x+5\right)^2\ge0\forall x\)

Vậy \(P\ge0\forall x\)

\(b,P=\left(x^2+5x+5\right)^2\left(cmt\right)\)

Thay \(x=\frac{\sqrt{7}-5}{2}\)vào P ta được

\(P=\left(\left(\frac{\sqrt{7}-5}{2}\right)^2+5.\frac{\sqrt{7}-5}{2}+5\right)^2\)

\(=\left(\frac{7-10\sqrt{7}+25}{4}+\frac{10\sqrt{7}-50}{4}+\frac{20}{4}\right)^2\)

\(=\left(\frac{32-10\sqrt{7}+10\sqrt{7}-50+20}{4}\right)^2\)

\(=\left(\frac{2}{4}\right)^2\)

\(=\frac{1}{4}\)

4 tháng 7 2018

a,

P=(x+1)(x+2)(x+3)(x+4)+1

P=[(x+1).(x+4)].[(x+2).(x+3)]+1

P=(x^2+5x+4)(x^2+5x+6)+1

P=[(x^2+5x+5)-1].[(x^2+5x+5)+1]+1

P=(x^2+5x+5)^2-1+1

P=\(\left(x^2+5x+5\right)^2\) \(\ge\)0 với mọi x

Câu b thì thay x vào rồi bấm máy ra ra kết quả

14 tháng 7 2016

a)xm+4+xm+3-x-1

=(xm+4-x)+(xm+3-1)

=x(xm+3-1)+(xm+3-1)

=(x+1)(xm+3-1)

Với x=-2 ta có:... bn tự thay

b)x6-x4+2x3+2x2=x6-2x5+2x4+2x5-4x4+4x3+x4-2x3+2x2

=x4(x2-2x+2)+2x3(x2-2x+2)+x2(x2-2x+2)

=(x4+2x3+x2)(x2-2x+2)

=[x2(x2+2x+1)](x2-2x+2)

=x2(x+1)2(x2-2x+2)

Với x=-2 bn tự thay nhé h mk bận