cho a+b+c+d=0 CM a3+b3+c3+d3=3(ab-cd)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^3+b^3+c^3+d^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)
\(=-\left(c+d\right)^3+3ab\left(c+d\right)+\left(c+d\right)^3-3cd\left(c+d\right)\) (vì \(a+b=-\left(c+d\right)\))
\(=3\left(c+d\right)\left(ab-cd\right)\)
Vậy đẳng thức được chứng minh.
Ta có : \(a+b+c+d=0\)
\(\Leftrightarrow a+b=-c-d\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c-d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab.\left(a+b\right)=-c^3-d^3+3cd.\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3cd.\left(c+d\right)-3ab.\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3.cd.\left(a+b\right)+3ab.\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3.\left(c+d\right)\left(cd+ab\right)\)
Ta có : a+b+c+d=0
⇔a+b=−c−d
⇔(a+b)3=(−c−d)3
⇔a3+b3+3ab.(a+b)=−c3−d3+3cd.(c+d)
⇔a3+b3+c3+d3=3cd.(c+d)−3ab.(a+b)
⇔a3+b3+c3+d3=3.cd.(a+b)+3ab.(c+d)
⇔a3+b3+c3+d3=3.(c+d)(cd+ab)
a+b+c+d=0 => a+d= -b-c; (a+b)3=a3+b3+3ab(a+b) => a3+b3=(a+b)3-3ab(a+b)
a3+d3+b3+d3
=(a+d)3- 3ad(a+d)+ (b+c)3-3bc(b+c) (1)
Do a+d=-b-c nên pt (1) trở thành:
-(b+c)3-3ad(-b-c)+ (b+c)3-3bc(b+c)
=3ad(b+c)-3bc(b+c)
=3(b+c)(ad-bc) <đccm>
Lời giải:
$a^3+b^3=2(c^3-8d^3)$
$a^3+b^3+c^3+d^3=c^3+d^3+2(c^3-8d^3)$
$=3c^3-15d^3=3(c^3-5d^3)\vdots 3$
Khi đó:
$(a+b+c+d)^3=(a+b)^3+(c+d)^3+3(a+b)(c+d)(a+b+c+d)$
$=a^3+b^3+c^3+d^3+3ab(a+b)+3cd(c+d)+3(a+b)(c+d)(a+b+c+d)\vdots 3$ do:
$a^3+b^3+c^3+d^3\vdots 3$
$3ab(a+b)\vdots 3$
$3cd(c+d)\vdots 3$
$3(a+b)(c+d)(a+b+c+d)\vdots 3$
Vậy:
$(a+b+c+d)^3\vdots 3$
$\Rightarrow a+b+c+d\vdots 3$