K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

a < b

=> 2a < 2b (Nhân 2 vào 2 vế của BPT)

=> -2a > -2b (Nhân -1 vào 2 vế của BPT)

=> -2a + (-5) > -2b + (-5) (Cộng -5 vào 2 vế của BPT)

=> -2a - 5 > -2b - 5 (Đpcm).

6 tháng 7 2016

cảm ơn rất nhiều ạ

NV
1 tháng 5 2019

ĐKXĐ: \(x>9\)

\(P=\sqrt{\frac{x+7}{\sqrt{x}-3}}=\sqrt{\sqrt{x}+3+\frac{16}{\sqrt{x-3}}}=\sqrt{\sqrt{x}-3+\frac{16}{\sqrt{x}-3}+6}\)

\(P\ge\sqrt{2\sqrt{\left(\sqrt{x}-3\right).\frac{16}{\left(\sqrt{x}-3\right)}}+6}=\sqrt{14}\)

\(\Rightarrow P_{min}=\sqrt{14}\) khi \(\sqrt{x}-3=4\Rightarrow x=49\)

b/ Phương trình hoành độ giao điểm: \(x^2-6x-m^2+1=0\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=-m^2+1\end{matrix}\right.\)

\(x_1^2-6x_2+x_1x_2=48\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-6x_2=48\)

\(\Leftrightarrow-6x_1-6x_2=48\)

\(\Leftrightarrow x_1+x_2=-8\)

Mà theo Viet \(x_1+x_2=-6\Rightarrow\) không tồn tại m thỏa mãn

NV
2 tháng 5 2019

À à, đoạn Viet \(x_1+x_2=6\) mà mình lấy -6

a: Thay x=0 và y=5 vào (d), ta được:

(m-2)x0+m=5

=>m=5

c: Để hai đườg song song thì m-2=2

hay m=4

15 tháng 11 2017

915370

là kết quả

10 tháng 12 2021

Câu 1.

Khi mở khóa K:

\(I_m=I_1=0,4A\)

Khi đóng khóa K:

\(I_m=I_1+I_2=0,6\Rightarrow I_2=0,2A\)

\(U_1=0,4\cdot5=2V\)

\(\Rightarrow U_2=U_1=2V\)

\(\Rightarrow U=U_1=U_2=2V\)

\(R_2=\dfrac{U_2}{I_2}=\dfrac{2}{0,2}=10\Omega\)

Gọi 3 số nguyêntố đó là: a, b, c

Ta có: 5(a+b+c)

=>abc chia hết cho 5, do a,b,c nguyên tố

=>chỉ có trường hợp 1 trong 3 số bằng 5, giả sử a=5

=>bc=b+c+5=>(b-1)(c-1)=6

trương hợp 1: b - 1 = 1=>b=2;c - 1 = 6=>c=7

trường hợp 2: b - 1= 2, c - 1 = 3 =>c=4(loại)

vậy 3 số nguyên tố đó là: 2;5;7

7 tháng 3

sao abc lại ⋮5?

Câu 10:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\notin\left\{2;-1\right\}\\y\ne-5\end{matrix}\right.\)

\(A=\dfrac{y+5}{x^2-4x+4}\cdot\dfrac{x^2-4}{x+1}\cdot\dfrac{x-2}{y+5}\)

\(=\dfrac{y+5}{y+5}\cdot\dfrac{\left(x^2-4\right)}{x^2-4x+4}\cdot\dfrac{x-2}{x+1}\)

\(=\dfrac{\left(x^2-4\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x^2-4x+4\right)}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x-2\right)^2}=\dfrac{x+2}{x+1}\)

b: \(A=\dfrac{x+2}{x+1}\)

=>A không phụ thuộc vào biến y

Khi x=1/2 thì \(A=\left(\dfrac{1}{2}+2\right):\left(\dfrac{1}{2}+1\right)=\dfrac{5}{2}:\dfrac{3}{2}=\dfrac{5}{2}\cdot\dfrac{2}{3}=\dfrac{5}{3}\)

Câu 12:

a: \(A=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{x^2-9}\)

\(=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x\left(x-3\right)+2x\left(x+3\right)+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x^2-3x+2x^2+6x+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x+9}{\left(x+3\right)\left(x-3\right)}=\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3}{x-3}\)

b: Khi x=1 thì \(A=\dfrac{3}{1-3}=\dfrac{3}{-2}=-\dfrac{3}{2}\)

\(x+\dfrac{1}{3}=\dfrac{10}{3}\)

=>\(x=\dfrac{10}{3}-\dfrac{1}{3}\)

=>\(x=\dfrac{9}{3}=3\left(loại\right)\)

Vậy: Khi x=3 thì A không có giá trị

c: \(B=A\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x-3}\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x^2-4x+5}\)

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1>=1\forall x\) thỏa mãn ĐKXĐ

=>\(B=\dfrac{3}{x^2-4x+5}< =\dfrac{3}{1}=3\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x-2=0

=>x=2

3 tháng 4 2022

Var a, s:real;

Begin

Write('Nhap a = ');readln(a);

S:=3.14*a*a/2;

Write('Dien tich hinh tron la ',s:10:2);

Readln;

End.

a: BC=căn 6^2+8^2=10cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=10/7

=>CD=40/7cm

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

12 tháng 12 2021

Đề 1:

Bài 1:

\(a,=\sqrt{\left(\sqrt{7}+1\right)^2}-\left|-1+\sqrt{7}\right|=\sqrt{7}+1-\sqrt{7}+1=2\\ b,=2\sqrt{2}-4\sqrt{2}-5\sqrt{2}+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}-7\sqrt{2}=\dfrac{-13\sqrt{2}}{\sqrt{2}}\)

Bài 2:

\(PT\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=\dfrac{1}{2}\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{1}{2}=1\\x=-\dfrac{1}{2}+\dfrac{1}{2}=0\end{matrix}\right.\)

Bài 3:

\(a,M=\dfrac{a-2\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{2\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}=\dfrac{2}{\sqrt{a}+1}\\ b,M< 1\Leftrightarrow\dfrac{2}{\sqrt{a}+1}-1< 0\Leftrightarrow\dfrac{1-\sqrt{a}}{\sqrt{a}+1}< 0\\ \Leftrightarrow1-\sqrt{a}< 0\left(\sqrt{a}+1>0\right)\\ \Leftrightarrow a>1\)