Cho tgABC có 3 góc nhọn nội tiếp (O), các đường cao AD, BE, CF cắt nhau tại H. EF cắt (O) tại X (không quan trọng bên nào). Chứng minh AX là tiếp tuyến đường tròn ngoại tiếp XHD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
góc BFC=góc BEC=90 dộ
=>BFEC nội tiếp
b: góc FEB=góc BAD
góc DEB=góc FCB
mà góc BAD=góc FCB
nên góc FEB=góc DEB
=>EB là phân giác của góc FED
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>FE vuông góc OA
=>OA vuông góc IK
xét tứ giác BFHD có
góc BFH + góc BDH = 180
mà nó là 2 góc đối => nội tiếp => góc FDH = góc FBE
chứng minh tương tự với tứ giác CEHD
=> góc HDE = góc HCE
Xét tứ giác BFEC có
góc BFC = góc BEF = 90
mà nó là 2 góc kề => tứ giác nội tiếp
mà góc BEC = 1/2 sđ BC = 90 => SĐ BC = 180 => BC là đường kính mà I là trung điểm BC => I là tâm đường tròn ngoại tiếp tứ giác BFEC
=> góc FIE = góc FBE + góc FCE
=> Góc FIE = góc FDH+góc HDE => góc FIE = góc FDE
mà nó là 2 góc kề => nội tiếp
=> điều phải cm
Lời giải:
a) Vì $SB, SC$ là tiếp tuyến $(O)$ nên $SB\perp OB, SC\perp OC$
$\Rightarrow \widehat{OBS}=\widehat{OCS}=90^0$
Tứ giác $SBOC$ có tổng 2 góc đối nhau $\widehat{OBS}+\widehat{OCS}=90^0+90^0=180^0$ nên $SBOC$ là tứ giác nội tiếp.
b)
$\widehat{BEC}=\widehat{BFC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp
$\Rightarrow \widehat{IFB}=\widehat{AFE}=\widehat{ACB}(1)$
Mà:
$\widehat{IBF}=\widehat{IBA}=\widehat{ACB}(2)$ (góc nt tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)
Từ $(1);(2)\Rightarrow \widehat{IFB}=\widehat{IBF}$
$\Rightarrow \triangle IFB$ cân tại $I$
$\Rightarrow IF=IB$
c)
$\widehat{FAK}=\widehat{BAO}=\frac{180^0-\widehat{AOB}}{2}=90^0-\widehat{ACB}=\widehat{CAD}(3)$
$\widehat{AFK}=\widehat{AFE}=\widehat{ACB}=\widehat{ACD}(4)$
Từ $(3);(4)\Rightarrow \triangle AFK\sim \triangle ACD$ (g.g)
$\Rightarrow \frac{AF}{AC}=\frac{FK}{CD}(*)$
Mặt khác:
Dễ thấy $\triangle AFE\sim \triangle ACB$ (g.g)
$\Rightarrow \frac{AF}{AC}=\frac{FE}{CB}(**)$
Từ $(*);(**)\Rightarrow \frac{FK}{CD}=\frac{EF}{BC}$
$\Rightarrow FK.BC=EF.CD$ (đpcm)