K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: Xét ΔABC vuông tại A có 

\(AB=BC\cdot\cos60^0\)

\(\Leftrightarrow BC=\dfrac{a}{\dfrac{1}{2}}=2a\)

\(\Leftrightarrow AC=\sqrt{BC^2-AB^2}=a\sqrt{3}\)

\(\widehat{C}=90^0-60^0=30^0\)

25 tháng 2 2018

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

 

B C 2 = A B 2 + A C 2 ⇒ A B 2 = B C 2 - A C 2

 

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

1) ta co ket qua nhu sau:
sinAcosA+cosAcosB = sinAsinB+sinAcosA
<=> cosAcosB-sinAsinB=0
<=>cos(A+B)=0
<=> -cosC=0 (vi A+B+C=180)
hay cosC=0 => C=90

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Lời giải:

Đặt \(AC=\frac{BC}{2}=a\) \(\Rightarrow BC=2a\)

Áp dụng định lý Pitago:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{(2a)^2-a^2}=\sqrt{3}a\)

Vậy:

\(\sin B=\frac{AC}{BC}=\frac{a}{2a}=\frac{1}{2}\)

\(\cos B=\frac{AB}{BC}=\frac{\sqrt{3}a}{2a}=\frac{\sqrt{3}}{2}\)

\(\tan B=\frac{AC}{AB}=\frac{a}{\sqrt{3}a}=\frac{1}{\sqrt{3}}\)

\(\cot B=\frac{AB}{AC}=\frac{\sqrt{3}a}{a}=\sqrt{3}\)

29 tháng 10 2018

mình gửi từ tháng 8 năm 2017 mà bây giờ tháng 10 năm 2018 rồi thì bạn trả lời làm gì nữa ?

12 tháng 6 2016

Vì sinB = \(\frac{3}{5}\)   , ta có : sin2B + cos2B = 1

nên cos2B = 1 - sin2B = 1 - ( \(\frac{3}{5}\) )2  = 1 - \(\frac{9}{25}\)   = \(\frac{16}{25}\)   

Vậy cosB = \(\frac{4}{5}\)    ( vì cosB > 0 )

Suy ra : tgB = sinB : cosB = \(\frac{3}{5}\)  : \(\frac{4}{5}\)   = \(\frac{3}{4}\) 

               cotgB = cosB : sinB = \(\frac{4}{5}\)   : \(\frac{3}{5}\)   = \(\frac{4}{3}\)

26 tháng 7 2016

mơn nhoa

4 tháng 3 2018

a) √2 cos(x - π/4)

= √2.(cosx.cos π/4 + sinx.sin π/4)

= √2.(√2/2.cosx + √2/2.sinx)

= √2.√2/2.cosx + √2.√2/2.sinx

= cosx + sinx (đpcm)

b) √2.sin(x - π/4)

= √2.(sinx.cos π/4 - sin π/4.cosx )

= √2.(√2/2.sinx - √2/2.cosx )

= √2.√2/2.sinx - √2.√2/2.cosx

= sinx – cosx (đpcm).

27 tháng 4 2021

TL:

sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A

27 tháng 4 2021

Vế trái = sinA + sinB + sinC

= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2[cos(A - B)/2 + sinC/2]

=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]

= 4.cosC/2.cosB/2.cosA/2

Vế phải = 1 - cosA + cosB + cosC

= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2

= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)

= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2

= 4.sinA/2.cosB/2.cosC/2

Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC

<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2

<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0

mà cosB/2 ≠ 0 và cosC/2 ≠ 0

=> sinA/2 = cosA/2

<=> A/2 = 45o

<=> A = 90o

tam giác ABC vuông tại A

NV
6 tháng 5 2019

\(2sinB.sinC=1+cosA\Leftrightarrow cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)=1\)

\(\Rightarrow B-C=0\Rightarrow B=C\)

\(sinA=\frac{cosA+cosB}{sinB+sinC}=\frac{cosA+cosB}{2sinB}\) (do \(B=C\))

\(\Leftrightarrow2sinA.sinB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)-cos\left(A+B\right)=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosC=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)=cosB\)

\(\Rightarrow A-B=B\Rightarrow A=2B=B+C\)

\(A+B+C=180^0\Rightarrow2A=180^0\Rightarrow A=90^0\)

\(\Rightarrow\Delta ABC\) vuông cân tại A