Cho tam giác ABC vuông tại C . Hãy tinhs sinA,cosA,tgA,sinB,cosB,tgB,cotgB biết cotgA=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔABC vuông tại A có
\(AB=BC\cdot\cos60^0\)
\(\Leftrightarrow BC=\dfrac{a}{\dfrac{1}{2}}=2a\)
\(\Leftrightarrow AC=\sqrt{BC^2-AB^2}=a\sqrt{3}\)
\(\widehat{C}=90^0-60^0=30^0\)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2 ⇒ A B 2 = B C 2 - A C 2
1) ta co ket qua nhu sau:
sinAcosA+cosAcosB = sinAsinB+sinAcosA
<=> cosAcosB-sinAsinB=0
<=>cos(A+B)=0
<=> -cosC=0 (vi A+B+C=180)
hay cosC=0 => C=90
Lời giải:
Đặt \(AC=\frac{BC}{2}=a\) \(\Rightarrow BC=2a\)
Áp dụng định lý Pitago:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{(2a)^2-a^2}=\sqrt{3}a\)
Vậy:
\(\sin B=\frac{AC}{BC}=\frac{a}{2a}=\frac{1}{2}\)
\(\cos B=\frac{AB}{BC}=\frac{\sqrt{3}a}{2a}=\frac{\sqrt{3}}{2}\)
\(\tan B=\frac{AC}{AB}=\frac{a}{\sqrt{3}a}=\frac{1}{\sqrt{3}}\)
\(\cot B=\frac{AB}{AC}=\frac{\sqrt{3}a}{a}=\sqrt{3}\)
mình gửi từ tháng 8 năm 2017 mà bây giờ tháng 10 năm 2018 rồi thì bạn trả lời làm gì nữa ?
Vì sinB = \(\frac{3}{5}\) , ta có : sin2B + cos2B = 1
nên cos2B = 1 - sin2B = 1 - ( \(\frac{3}{5}\) )2 = 1 - \(\frac{9}{25}\) = \(\frac{16}{25}\)
Vậy cosB = \(\frac{4}{5}\) ( vì cosB > 0 )
Suy ra : tgB = sinB : cosB = \(\frac{3}{5}\) : \(\frac{4}{5}\) = \(\frac{3}{4}\)
cotgB = cosB : sinB = \(\frac{4}{5}\) : \(\frac{3}{5}\) = \(\frac{4}{3}\)
a) √2 cos(x - π/4)
= √2.(cosx.cos π/4 + sinx.sin π/4)
= √2.(√2/2.cosx + √2/2.sinx)
= √2.√2/2.cosx + √2.√2/2.sinx
= cosx + sinx (đpcm)
b) √2.sin(x - π/4)
= √2.(sinx.cos π/4 - sin π/4.cosx )
= √2.(√2/2.sinx - √2/2.cosx )
= √2.√2/2.sinx - √2.√2/2.cosx
= sinx – cosx (đpcm).
TL:
sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A
Vế trái = sinA + sinB + sinC
= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2[cos(A - B)/2 + sinC/2]
=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]
= 4.cosC/2.cosB/2.cosA/2
Vế phải = 1 - cosA + cosB + cosC
= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2
= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)
= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2
= 4.sinA/2.cosB/2.cosC/2
Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC
<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2
<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0
mà cosB/2 ≠ 0 và cosC/2 ≠ 0
=> sinA/2 = cosA/2
<=> A/2 = 45o
<=> A = 90o
tam giác ABC vuông tại A
\(2sinB.sinC=1+cosA\Leftrightarrow cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)
\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)
\(\Leftrightarrow cos\left(B-C\right)=1\)
\(\Rightarrow B-C=0\Rightarrow B=C\)
\(sinA=\frac{cosA+cosB}{sinB+sinC}=\frac{cosA+cosB}{2sinB}\) (do \(B=C\))
\(\Leftrightarrow2sinA.sinB=cosA+cosB\)
\(\Leftrightarrow cos\left(A-B\right)-cos\left(A+B\right)=cosA+cosB\)
\(\Leftrightarrow cos\left(A-B\right)+cosC=cosA+cosB\)
\(\Leftrightarrow cos\left(A-B\right)+cosB=cosA+cosB\)
\(\Leftrightarrow cos\left(A-B\right)=cosB\)
\(\Rightarrow A-B=B\Rightarrow A=2B=B+C\)
Mà \(A+B+C=180^0\Rightarrow2A=180^0\Rightarrow A=90^0\)
\(\Rightarrow\Delta ABC\) vuông cân tại A