K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

Ta có: A=2x2-3x+1=\(2\left(x^2-2.\dfrac{3}{4}+\dfrac{9}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)

Vì \(2\left(x-\dfrac{3}{4}\right)^2\ge0\)

 \(\Rightarrow A\ge-\dfrac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

Vậy,Min \(A=\dfrac{-1}{8}\Leftrightarrow x=\dfrac{3}{4}\)

17 tháng 12 2023

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

NV
16 tháng 1 2021

\(A=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)

\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

\(y=4x^2+\dfrac{9}{x^2}-3\ge2\sqrt{\dfrac{36x^2}{x^2}}-3=9\)

\(y_{min}=9\) khi \(x^2=\dfrac{3}{2}\)

\(P=\dfrac{x-1}{4}+\dfrac{1}{x-1}+\dfrac{1}{4}\ge2\sqrt{\dfrac{x-1}{4\left(x-1\right)}}+\dfrac{1}{4}=\dfrac{5}{4}\)

\(P_{min}=\dfrac{5}{4}\) khi \(x=\dfrac{3}{2}\)

6 tháng 3 2022

ủa, ko cho x thì sao mak làm:?

6 tháng 3 2022

có x đó b

 

4 tháng 8 2021

Ta có:A=x2-5x+1=\(\left(x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}\right)-\dfrac{25}{4}+1=\left(x-\dfrac{5}{4}\right)^2-\dfrac{21}{4}\)

Vì \(\left(x-\dfrac{5}{4}\right)^2\ge0\)

⇒ \(A\ge-\dfrac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

Ta có: \(A=\left(x-3\right)^2+\left(11-x\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x=7

24 tháng 11 2021

\(A=x^2-8x+5\)

\(=\left(x^2-8x+16\right)-11\)

\(=\left(x-4\right)^2-11\)

\(=-11+\left(x-4\right)^2\)

Vì \(\left(x-4\right)^2\) ≥ 0

⇒ A ≥ -11

Min A=-11 ⇔\(x-4=0\)

                 ⇔\(x=4\)

16 tháng 10 2021

\(A=x^2-6x+15=\left(x^2-6x+9\right)+6\)

\(=\left(x-3\right)^2+6\ge6\)

\(minA=6\Leftrightarrow x=3\)

16 tháng 10 2021

A=x²-2x3+3²+6

A=(x-3)²+6

Vì (x-3)² luôn > hoặc = 0 với mọi x

=> (x-3)²+6 > hoặc = 6

Vậy GTNN = 6 

Dấu "=" xảy ra khi x-3=0

X=3