So sánh :
a) \(\left(\frac{1}{243}\right)^9\) và \(\left(\frac{1}{83}\right)^{13}\)
b)1990^10+1990^9 và 1991^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co( \(\frac{1}{243}\))9=(\(\frac{1}{3}\))45=(\(\frac{1}{81}\))11,25<(\(\frac{1}{83}\))13
ta co( \(\frac{1}{243}\))9=(\(\frac{1}{3}\))45=(\(\frac{1}{81}\))11,25<(\(\frac{1}{83}\))13
Giải:
a) \(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) và \(B=\dfrac{10^{1991}+1}{10^{1992}+1}\)
Ta có:
\(A=\dfrac{10^{1990}+1}{10^{1991}+1}\)
\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}\)
\(10A=\dfrac{10^{1991}+1+9}{10^{1991}+1}\)
\(10A=1+\dfrac{9}{10^{1991}+1}\)
Tương tự :
\(B=\dfrac{10^{1991}+1}{10^{1992}+1}\)
\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}\)
\(10B=\dfrac{10^{1992}+1+9}{10^{1992}+1}\)
\(10B=1+\dfrac{9}{10^{1992}+1}\)
Vì \(\dfrac{9}{10^{1991}+1}>\dfrac{9}{10^{1992}+1}\) nên \(10A>10B\)
\(\Rightarrow A>B\left(đpcm\right)\)
Chúc bạn học tốt!
Lời giải:
$A=1990^{10}+1990^9=1990^9(1990+1)=1990^9.1991< 1991^9.1991=1991^{10}$
Hay $A< B$
Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)
=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)
=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)
=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)
=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)
=> B < A
Ta có : \(A=\frac{10^{1990}+1}{10^{1991}+1}=>10A=\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)
\(=>10A=\frac{10^{1991}+10}{10^{1991}+1}=\frac{\left(10^{1991}+1\right)+9}{10^{1991}+1}\)
\(=>10A=1+\frac{9}{10^{1991}+1}\)
Ta lại có : \(B=\frac{10^{1991}+1}{10^{1992}+1}=>10B=\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)
Tương tự như A => \(10B=1+\frac{9}{10^{1992}+1}\)
Vì \(\frac{9}{10^{1991}+1}>\frac{9}{10^{1992}+1}=>10A>10B\)
\(=>A>B\)
\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+10}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)
Vì \(10^{1991}< 10^{1992}\Rightarrow1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)
\(\Rightarrow\frac{10^{1990}+1}{10^{1991}+1}>\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow A>B\)
Ta có : \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)
Mà : \(\frac{10^{1991}+1+9}{10^{1992}+1+9}=\frac{10^{1991}+10}{10^{1992}+10}\)
\(=\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)
\(=\frac{10^{1990}+1}{10^{1991}+1}\)
\(\Rightarrow B< A\)
a) \(\left(\frac{1}{243}\right)^9=\left(\frac{1}{3^5}\right)^9=\frac{1}{3^{45}}\)
\(\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{81}\right)^{13}=\left(\frac{1}{3^4}\right)^{13}=\frac{1}{3^{52}}< \frac{1}{3^{45}}=\left(\frac{1}{243}\right)^9\Rightarrow\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{243}\right)^9\)
b) 199010 + 19909
= 19909 ( 1990 + 1 )
= 19909 . 1991 < 199110 = 19919 . 1991
Vậy 199010 + 19909 < 199110