K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2  = 52, từ đó DB = 52 = 2 13 (cm)

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

Hệ thức lượng trong tam giác vuông

5 tháng 7 2023

Theo đề có:

\(\dfrac{HD}{BH}=\dfrac{AD^2}{AB^2}=\dfrac{4^2}{6^2}=\dfrac{4}{9}\)

Tam giác HDC ∼ tam giác HBA nên: 

\(\dfrac{DC}{AB}=\dfrac{HD}{BH}=\dfrac{4}{9}\Rightarrow DC=AB.\dfrac{4}{9}=6.\dfrac{4}{9}=\dfrac{8}{3}\left(cm\right)\)

Từ C kẻ CK là đường cao của tam giác ABC có: \(KB=AB-DC=6-\dfrac{8}{3}=\dfrac{10}{3}\left(cm\right)\)

\(\Rightarrow BC=\dfrac{\sqrt{244}}{3}=\dfrac{2\sqrt{61}}{3}\left(cm\right)\)

Xét tam giác vuông ABD có \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

9 tháng 10 2021

undefined

Hai đường chéo AC,BD cắt nhau tại H .Trong tam giác vuông ABD ,ta có :

\(\frac{HD}{HB}=\frac{AD^2}{AB^2}=\frac{4^2}{6^2}=\frac{4}{6}\)

Dễ thấy \(\Delta HDC~\Delta HBA\)nên 

\(\frac{DC}{AB}=\frac{HD}{HB}\)\(=\frac{4}{9}\)\(\Rightarrow\)\(DC\)=\(\frac{4}{9}.6=\frac{8}{3}\)(Cm)

Kẻ đường cao CK của tam giác ABC , dễ thấy KB = AB - DC = 6 -\(\frac{8}{3}\)=\(\frac{10}{3}\)

\(\Rightarrow\)\(BC=\frac{\sqrt{224}}{3}=\frac{2\sqrt{61}}{3}\left(cm\right)\)

16 tháng 7 2023

Theo đề có:

����=��2��2=4262=49

Tam giác HDC ∼ tam giác HBA nên: 

����=����=49⇒��=��.49=6.49=83(��)

Từ C kẻ CK là đường cao của tam giác ABC có: ��=��−��=6−83=103(��)

⇒��=2443=2613(��)

Xét tam giác vuông ABD có ��=��2+��2=62+42=213(��)

16 tháng 7 2023

.

 

2/Cho h ình thoi có độ dài hai đường chéo bằng 6cm và 8cm .Tính độ dài cạnh hình thoi?3/Cho hình thang ABCD có AB // CD, AB = 4, CD = 12.Tính độ dài đường TB của hình thang4/Tam giác ABC vuông tại A, BC = 7cm, MB = MC, M BC.Tính độ dài AM?5/Cho tam giác ABC có M,N theo thứ tự là trung điểm của AB và AC.Biết MN = 4,5 cm.Tính độ dài cạnh BC.6/Cho hình thang ABCD (AB//CD),gọi E,F theo thứ tự là trung điểm của AD và...
Đọc tiếp

2/Cho h ình thoi có độ dài hai đường chéo bằng 6cm và 8cm .Tính độ dài cạnh hình thoi?

3/Cho hình thang ABCD có AB // CD, AB = 4, CD = 12.Tính độ dài đường TB của hình thang

4/Tam giác ABC vuông tại A, BC = 7cm, MB = MC, M BC.Tính độ dài AM?

5/Cho tam giác ABC có M,N theo thứ tự là trung điểm của AB và AC.Biết MN = 4,5 cm.Tính độ dài cạnh BC.

6/Cho hình thang ABCD (AB//CD),gọi E,F theo thứ tự là trung điểm của AD và BC.Biết EF = 6cm, AB = 4cm ,tính độ dài cạnh CD?

7/Hình thang có độ dài đáy lớn gấp đôi đáy nhỏ . Độ dài đường trung bình là 12 cm. Tính độ dài 2 đáy.

8/Cho hình chữ nhật ABCD, hai đường chéo AC và BD cắt nhau tại O, biết AO = 3cm, Tính độ dài BD?

9/Cho ABC và một điểm O tuỳ ý . Vẽ A/B/C/ đối xứng với ABC qua điểm O .

10/Cho hình vuông ABCD có độ dài đường chéo bằng 10cm.Tính cạnh hình vuông?

11/Cho hình vuông ABCD có độ dài cạnh bằng 3.Tính độ dài đường chéo của hình vuông?

12/T ính độ dài đường trung tuyến ứng với cạnh huyền của một tam giác vuông có các

cạnh góc vuông bằng 3 cm v à 4 cm.

1
6 tháng 11 2021

có làm thì mới có ăn

19 tháng 6 2016

1/

  A B C D H K 1 2,7

Kẻ AH \(\perp\)CD , \(BK\perp CD\)

Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK

   => tam giác AHD = tam giác BKC (gcg) 

   => DH = KC 

Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)

Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)

    => x = 1/2 hay DH = KC = 1/2 

Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)

Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)

    Vậy AB = 1,7m

2/ 

I D C A B 1 2

a/ Cm: tam giác ICD đều:

 Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D 

 => ID = DC (1)

 => DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)

 Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị) 

       mà góc IDC = góc ICD

    => góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm

    => ID = IA + AD = 4 + 4 = 8cm (3) 

 Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều

b/ Tính chu vi hình thang ABCD:

 Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm

 ID = DC = 8cm

 Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)