K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 3 2022

\(m=0\)dễ thấy không thỏa mãn. 

\(m\ne0\)

\(\Delta'=\left(m-1\right)^2-3\left(m-2\right).m=-2m^2+4m+1\)

Để phương trình đã cho có hai nghiệm \(x_1,x_2\)thì \(\Delta'\ge0\Rightarrow-2m^2+4m+1\ge0\).

Khi phương trình có hai nghiệm \(x_1,x_2\), theo Viete ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1x_2=\frac{3\left(m-2\right)}{m}\end{cases}}\)

Ta có: \(x_1+2x_2=1\)

\(\Rightarrow\left(x_1+2x_2-1\right)\left(x_2+2x_1-1\right)=0\)

\(\Leftrightarrow5x_1x_2+2\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)+1=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)^2-3\left(x_1+x_2\right)+x_1x_2+1=0\)

\(\Rightarrow2\left[\frac{2\left(m-1\right)}{m}\right]^2-\frac{6\left(m-1\right)}{m}+\frac{3\left(m-2\right)}{m}+1=0\)

\(\Leftrightarrow8\left(m-1\right)^2-6m\left(m-1\right)+3m\left(m-2\right)+m^2=0\)

\(\Leftrightarrow6m^2-16m+8=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\)

Thử lại đều thỏa mãn. 

12 tháng 3 2022

hok bé ơi