C = 1/11.13+1/13.15+1/15.17+...+1/2015.2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi dãy trên là A
\(\Leftrightarrow2A=\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{19\cdot21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{21}+0+...+0\)
\(\Leftrightarrow2A=\frac{10}{231}\)
\(\Leftrightarrow A=\frac{5}{231}\)
a) \(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-\frac{20}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
x = 1
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\) ( nhân cho cả tử và mẫu của các số hạng trên ( ngoại trừ 2/x.(x+1) ) là 2)
\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
=> x + 1 = 18
x = 17
\(a,x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\Rightarrow x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Rightarrow x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Rightarrow x-\frac{8}{11}=\frac{3}{11}\)
\(\Rightarrow x=1\)
\(b,\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{18}=\frac{1}{x+1}\)
\(\Rightarrow x+1=18\Leftrightarrow x=17\)
a.x-2/11.13-2/13.15-2/15.17-...-2/55.57=4/3
=>x-(2/11.13+2/13.15+2/15.17+...+2/55.57)=4/3
=>x-(1/11-1/13+1/13-1/15+...+1/55-1/57)=4/3
=>x-(1/11-1/57)=4/3
=>x-46/627=4/3
=>x=4/3+46/627=294/209
\(x-\frac{20}{11.13}-\frac{20}{23.15}-....-\frac{20}{53.55}=\frac{3}{11}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+....+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
=> \(x=\frac{3}{11}+\frac{8}{11}=1\)
Gọi A = 2/11.13 +2/13.15+2/15.17 +...+2/53.55
=> A = 1/11-1/13+1/13-1/15+...+1/53-1/55
=> A = 1/11-1/55
=> A = 4/55
Đúng 100%
\(C=\frac{1}{11.13}+\frac{1}{13.15}+\frac{1}{15.17}+...+\frac{1}{2015.2017}\)
\(2C=\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{2015.2017}\)
\(2C=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(2C=\frac{1}{11}-\frac{1}{2017}\)
\(2C=\frac{2006}{22187}\)
\(C=\frac{1003}{22187}\)
C = 1/11 . 13 + 1/13 . 15 + 1/15 . 17 + ........ + 1/2015 . 2017
C = 1/11 - 1/13 + 1/13 - 1/15 + 1/15 - 1/17 + ......... + 1/2015 - 1/2017
C = 1/11 - 1/2017
C = 2006/22187