a x a x bba = bccd. Biết a,b,c,d là các chữ số khác nhau và d là số lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(110b=\overline{bb0}\le\overline{bba}\le\overline{bb9}=\overline{bb0}+9\le\overline{bbb}+9\le b\cdot111+9b=b\cdot120.\)
\(\Rightarrow110b\le\overline{bba}\le120b\)(1).
Tương tự ta có: \(1000b\le\overline{bccd}\le2000b\)(2)
Từ (1) và (2) suy ra:
\(\frac{1000b}{120b}\le\frac{\overline{bccd}}{\overline{bba}}=a\cdot a\le\frac{2000b}{110b}\Rightarrow8,33< a\cdot a< 18,18\)(*)
d lẻ nên bccd lẻ => a lẻ.
a lẻ thỏa mãn (*) => a = 3. => d = 7.
Bài toán trở thành: 9xbb3 = bcc7
<=> 9*(110b +3) = 1000b + 110c +7
<=> 20 = 10b +110c
<=>2 = b + 11c. Suy ra c = 0 và b = 2.
Vậy a = 3; b = 2; c = 0 và d = 7. ta có: 3x3x223 = 2007.
Vì d là số lẻ nên a cũng là số lẻ
Vì a,b,c khác nhau nên a không thể là 1,5,9
Vậy a có thể là 3 hoặc 7
Xét a=3 ta có :
3 x 3 x 3bb =7bcc
9 x 3bb=7bcc
9 x (110 x b +3)=1000 x b+110 x c + 7
990 x b +27 =1000 x b +110 x c +7
20 = 10 xb + 110 x c Chỉ xẩy ra khi 2 = b + 11 x c Chỉ xẩy ra khi b = 2 ; c = 0.
Những số tự nhiên cần tìm là : a = 3; b = 2; c = 0; d = 7
Xét a = 7 ta thấy không bao giờ xẩy ra vì 7 x 7 x bba sẽ là số có năm chữ số.
Đáp số: a = 3; b = 2; c = 0; d = 7
Chọn C.
Phương pháp:
Tính xác suất theo định nghĩa P A = n A n Ω với n(A) là số phần tử của biến cố A , n ( Ω ) la số phân tử của không gian mẫu.
+ Chú ý rằng: Nếu số được lấy ra có chữ số đứng trước nhỏ hơn chữ số đứng sau thì không thể có số 0 trong số đó.
Cách giải: + Số có 6 chữ số khác nhau là a b c d e f với a , b , c , d , e , f ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9
Nên a có 9 cách chọn, b có 9 cách chọn, c có 8 cách chọn, d có 7 cách chọn, e có 6 cách chọn và f có 5 cách chọn.Suy ra số phần tử của không gian mẫu n Ω = 9 . 9 . 8 . 7 . 6 . 5 = 136080
+ Gọi A là biến cố a b c d e f là số lẻ và a < b < c < d < e < f
Suy ra không thể có chữ số 0 trong số a b c d e f và f ∈ 7 ; 9 .
+ Nếu f = 7 ⇒ a , b , c , d , e ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 mà với mỗi bộ 5 số được lấy ra ta chỉ ó duy nhất 1 cách sắp xếp theo thứ tự tăng dần nên có thể lập được C 6 5 = 6 số thỏa mãn.
+ Nếu f = 9 ⇒ a , b , c , d , e ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 mà với mỗi bộ 5 số được lấy ra ta chỉ ó duy nhất 1 cách sắp xếp theo thứ tự tăng dần nên có thể lập được C 8 5 = 56 số thỏa mãn.
Suy ra n A = 6 + 56 = 62 nên xác suất cần tìm là P A = n A n Ω = 62 136080 = 31 68040