3/7<x/15<5/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{5}+\dfrac{3}{7}=\dfrac{14}{35}+\dfrac{15}{35}=\dfrac{29}{35}\)
\(\dfrac{1}{7}+\dfrac{3}{7}+\dfrac{4}{7}=\left(\dfrac{1}{7}+\dfrac{3}{7}\right)+\dfrac{4}{7}=\dfrac{1}{7}+\left(\dfrac{3}{7}+\dfrac{4}{7}\right)=\left(\dfrac{1}{7}+\dfrac{4}{7}\right)+\dfrac{3}{7}\)
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
\(6A=7^{2008}-1\)
\(A=\frac{7^{2008}-1}{6}\)
Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).
\(D=7+7^3+7^5+7^7+...+7^{99}\)
\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)
\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)
\(48D=7^{101}-7\)
\(D=\frac{7^{101}-7}{48}\)
Tương tự, \(E=\frac{2^{9011}-2}{3}\)
^$@*&^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%%%%%%$%%$%$%$%$%%%%%%%%%%%%%%%%%%454%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%$%%%%%%%%%%%%$%$%%$$%$%$%$%$%$%$%$%$
3+7+3+7+3+7+3+7+3+7+3+7+3+7
=10+10+10+10+10+10+10
=10x7
=70
ai k mình mình k lại
Ta có
A = \(\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\)
Đặt C = 1 + 7 + 72 + 73+...+711
7C = 7 + 72 + 73 + ... + 711 + 712
=> 6C = 712 - 1
C = \(\dfrac{7^{12}-1}{6}\)
Đặt D = 1 + 7 + 72 + 73+...+710
7D = 7 + 72 + 73 + ... + 710 + 711
=> 6D = \(7^{11}-1\)
D = \(\dfrac{7^{11}-1}{6}\)
=> A = \(\dfrac{\dfrac{7^{12}-1}{6}}{\dfrac{7^{11}-1}{6}}\)
A = \(\dfrac{7^{12}-1}{6}\) : \(\dfrac{7^{11}-1}{6}\)
A = \(\dfrac{7^{12}-1}{6}.\dfrac{6}{7^{11}-1}\)
A = \(\dfrac{7^{12}-1}{7^{11}-1}\) = 7, 000000003
Lại có:
B = \(\dfrac{1+3+3^2+3^3+...+3^{11}}{1+3+3^2+3^3+...+3^{10}}\)\
Đặt H = \(1+3+3^2+3^3+...+3^{11}\)
3H = \(3+3^2+3^3+...+3^{12}\)
=> 2H = \(3^{12}-1\)
H = \(\dfrac{3^{12}-1}{2}\)
Đặt Q = \(1+3+3^2+3^3+...+3^{10}\)
3Q = \(3+3^2+3^3+...+3^{10}+3^{11}\)
=> 2Q = \(3^{11}-1\)
Q = \(\dfrac{3^{11}-1}{2}\)
=> B = \(\dfrac{\dfrac{3^{12}-1}{2}}{\dfrac{3^{11}-1}{2}}\)
B = \(\dfrac{3^{12}-1}{2}:\dfrac{3^{11}-1}{2}\)
B = \(\dfrac{3^{12}-1}{2}.\dfrac{2}{3^{11}-1}\)
B = \(\dfrac{3^{12}-1}{3^{11}-1}\)
B = 3, 00001129
Vì 7, 000000003 > 3, 00001129
=> A > B
Vậy A > B