Cho 3 chữ số a,b,c thõa mãn 0<a<b<c. Gọi A là tập hợp các số có 3 chữ số, mỗi số gồm cả 3 chữ số a,b,c. Biết rằng tổng của hai số nhỏ nhất trong tập hợp A = 488. Khi đó a+b+c =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
bbb : ab = a x b
=>bbb : b : ab = a
=>111 : ab = a
=>111 : 37 = 3
=>a=3;b=7
<=> abcabc = abc . (1000 + 1) = abc . 1001
Ta có a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Tóm lại a = 7 ; b = 1 ; c = 4 ; d = 3
Vậy abcd = 7143
Có abbc < 10.000
=> ab.ac.7 < 10000
=> ab.ac < 1429
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)
=> a0 < 38
=> a <= 3
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại
+)Với a = 2 ta có
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
=> a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)
=> 1c.7 < 110 => 1c < 16 => c < 6
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
vậy số abc là 195
chúc bn hk toyó @_@
Có abbc < 10.000
=> ab.ac.7 < 10000
=> ab.ac < 1429
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)
=> a0 < 38
=> a <= 3
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại
+)Với a = 2 ta có
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
=> a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)
=> 1c.7 < 110 => 1c < 16 => c < 6
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
vậy số abc là 195
Có abbc < 10.000
=> ab.ac.7 < 10000
=> ab.ac < 1429
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)
=> a0 < 38
=> a <= 3
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại
+)Với a = 2 ta có
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
=> a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)
=> 1c.7 < 110 => 1c < 16 => c < 6
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
vậy số abc là 195
chúc bn hk toyó @_@
Tổng 2 số nhỏ nhất là abc+acb=488
200a+11b+11c=488
nếu a=1 thì b+c không nguyên
nếu a=2 thì b+c=8 thỏa mãn
vậy tổng a+b+c=10
li ke nha
trịnh mai phương copy tại : https://vn.answers.yahoo.com/question/index?qid=20130709080503AAU4x3f
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)