Bài 2: Tìm x, biết:
a) \(x-\dfrac{2}{3}=\dfrac{7}{12}\)
b) \(\dfrac{1}{2}.x+\dfrac{3}{5}.\left(x-2\right)=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.x+\dfrac{1}{6}=-\dfrac{3}{8}\)
\(\Leftrightarrow x=-\dfrac{13}{24}\)
\(b.2-\left(\dfrac{3}{4}-x\right)=\dfrac{7}{12}\)
\(\Leftrightarrow2-\dfrac{3}{4}+x=\dfrac{7}{12}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
\(c.\dfrac{1}{2}x+\dfrac{1}{8}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{8}x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{6}{5}\)
\(d.75\%-1\dfrac{1}{2}+0,5:\dfrac{5}{12}-\left(\dfrac{-1}{2}\right)^2\)
\(=\dfrac{75}{100}-\dfrac{3}{2}+\dfrac{1}{2}:\dfrac{5}{12}-\dfrac{1}{4}\)
\(=-\dfrac{3}{4}+\dfrac{6}{5}-\dfrac{1}{4}\)
\(=\dfrac{1}{5}\)
a) \(x+\dfrac{1}{6}=\dfrac{-3}{8}\)
\(x=\dfrac{-3}{8}-\dfrac{1}{6}\)
\(x=\dfrac{-13}{24}\)
vậy x =....
b) \(2-\left(\dfrac{3}{4}-x\right)=\dfrac{7}{12}\)
\(\dfrac{3}{4}-x=2-\dfrac{7}{12}\)
\(\dfrac{3}{4}-x=\dfrac{17}{12}\)
\(x=\dfrac{3}{4}-\dfrac{17}{12}\)
\(x=\dfrac{-2}{3}\)
vậy x =....
\(a,5,2x+7\dfrac{2}{5}=6\dfrac{3}{4}\\ \Rightarrow\dfrac{26}{5}x+\dfrac{37}{5}=\dfrac{27}{4}\\ \Rightarrow\dfrac{26}{5}x=-\dfrac{13}{20}\\ \Rightarrow x=-\dfrac{1}{8}\\ b,2,4:\left(\dfrac{-1}{2}-x\right)=1\dfrac{3}{5}\\ \Rightarrow\dfrac{12}{5}:\left(\dfrac{-1}{2}-x\right)=\dfrac{8}{5}\\ \Rightarrow\dfrac{-1}{2}-x=\dfrac{3}{2}\\ \Rightarrow x=-2\)
a) \(-0,6x-\dfrac{7}{3}=5,4\Leftrightarrow-\dfrac{3}{5}x=5,4+\dfrac{7}{3}\Leftrightarrow x=\dfrac{116}{15}.\left(-\dfrac{5}{3}\right)=-\dfrac{116}{9}\).
b) \(2,8:\left(\dfrac{1}{5}-3x\right)=1\dfrac{2}{5}\Leftrightarrow\dfrac{1}{5}-3x=2,8:\dfrac{7}{5}\Leftrightarrow-3x=2-\dfrac{1}{5}\Leftrightarrow x=\dfrac{9}{5}:\left(-3\right)=-\dfrac{3}{5}\).
a: \(\Leftrightarrow2x+\dfrac{7}{2}=\dfrac{16}{3}:\dfrac{11}{3}=\dfrac{16}{11}\)
=>2x=-45/22
hay x=-45/44
b: =>x/7=-1/28:1/4=-1/7
=>x=-1
a)(7/2+2x).11/3=16/3
7/2+2x=16/3:11/3
7/2+2x=16/3.3/11
7/2+2x=16/11
2x=16/11-7/2
2x= -45/22
x= -45/22:2
x= -45/44
Vậy x= -45/44
b)x/7 +1/4= -1/28
x/7= -1/28-1/4
x/7= -2/7
=>x= -2
a) \(x:\dfrac{6}{13}=\dfrac{13}{7}\\ \Rightarrow x=\dfrac{13}{7}.\dfrac{6}{13}\\ \Rightarrow x=\dfrac{6}{7}\)
b) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{1}{5}\\ \Rightarrow\dfrac{4}{7}.x=\dfrac{13}{15}\\ \Rightarrow x=\dfrac{91}{60}\)
c) \(\left(\dfrac{3}{10}-x\right):\dfrac{2}{5}=\dfrac{3}{5}\\ \Rightarrow\dfrac{3}{10}-x=\dfrac{6}{25}\\ \Rightarrow x=\dfrac{3}{50}\)
d) \(\dfrac{2}{3}x-\dfrac{7}{6}=\dfrac{5}{2}\\ \Rightarrow\dfrac{2}{3}x=\dfrac{11}{3}\\ \Rightarrow x=\dfrac{11}{2}\)
1,
a, \(\left(\dfrac{-4}{3}+\dfrac{1}{3}\right).\dfrac{5}{12}\)=-\(\dfrac{5}{12}\)
b, \(\dfrac{16}{5}+\left(\dfrac{-45}{14}\right):\dfrac{3}{28}\)
=\(\dfrac{-2}{15}\)
2,
a, 2x+19=25
=>x=3
b, \(-\dfrac{2}{9}x=\dfrac{1}{3}\)
=>x=\(\dfrac{-3}{2}\)
Bài 1:
a) Ta có: \(\dfrac{-4}{3}\cdot\dfrac{5}{12}+\dfrac{1}{3}\cdot\dfrac{5}{12}\)
\(=\dfrac{5}{12}\cdot\left(\dfrac{-4}{3}+\dfrac{1}{3}\right)\)
\(=\dfrac{-5}{12}\)
b) Ta có: \(3\dfrac{1}{5}+\left(\dfrac{2}{7}-\dfrac{7}{2}\right):\dfrac{3}{28}\)
\(=\dfrac{16}{5}+\left(\dfrac{4}{14}-\dfrac{49}{14}\right):\dfrac{3}{28}\)
\(=\dfrac{16}{5}+\dfrac{-45}{14}\cdot\dfrac{28}{3}\)
\(=\dfrac{16}{5}-30=\dfrac{-134}{5}\)
c: Ta có: \(\dfrac{1}{3}-\dfrac{7}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow x\cdot\dfrac{7}{8}=\dfrac{1}{12}\)
\(\Leftrightarrow x=\dfrac{1}{12}\cdot\dfrac{8}{7}=\dfrac{2}{21}\)
d: Ta có: \(\dfrac{3}{2}x+\dfrac{1}{7}=\dfrac{7}{8}\cdot\dfrac{64}{49}\)
\(\Leftrightarrow x\cdot\dfrac{3}{2}=1\)
hay \(x=\dfrac{2}{3}\)
a/ => \(\dfrac{3}{5}.\dfrac{1}{x}=\dfrac{6}{25}\)
=> \(\dfrac{1}{x}=\dfrac{2}{5}\)
=> x = 5/2
b/ \(\Rightarrow2\left(x-\dfrac{1}{3}\right)=\dfrac{2}{15}\)
=> \(x-\dfrac{1}{3}=\dfrac{1}{15}\)
=> \(x=\dfrac{2}{5}\)
c/ => | x + 1| = 10/21
=> \(\left[{}\begin{matrix}x=-\dfrac{11}{21}\\x=-\dfrac{31}{21}\end{matrix}\right.\)
d/ => \(5x+5=6x-3\)
=> x = 8
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
https://m.youtube.com/watch?v=TczQYf7-Gqk