K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

giúp mình với các bạn.....

5 tháng 2 2020

a) Ta có : \(D=\frac{3n+5}{3n+2}\)

Để D là phân số \(\Leftrightarrow3n+2\ne0\Leftrightarrow n\ne-\frac{2}{3}\)

b) Mình nhớ mình làm rồi

c) Để D max \(\Leftrightarrow\frac{3n+5}{3n+3}=1+\frac{2}{3n+3}\) max \(\Leftrightarrow\frac{2}{3n+3}max\Leftrightarrow3n+3min\)

27 tháng 10 2022

\(A=x^2-2x+1+x^2-4x+4\)

\(=2x^2-6x+5\)

\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu = xảy ra khi x=3/2

15 tháng 1 2019

khocroi

28 tháng 7 2016

\(B=4y^2+4y+5\)

\(=\left[\left(2y\right)^2+2.2y.1+1^2\right]+4\)

Vậy \(\left(2y+1\right)^2\ge0\)

\(\Rightarrow\left(2y+1\right)^2+4\ge4\)

Vậy GTNN là 4

Khi x = -1/2

16 tháng 6 2018

1: \(B=4y^2+4y+5=\left(2y\right)^2+2\cdot y\cdot2+2^2+1=\left(2y+2\right)^2+1\)

Để B min 

Suy ra \(\left(2y+2\right)^2+1\)min

Mà \(\left(2y+2\right)^2\ge0\)

Suy ra \(\left(2y+2\right)^2+1\ge1\)

Vậy B min = 1

2: \(M=-x^2-4x=-x^2-2\cdot x\cdot2-4+4=-\left(x^2+2\cdot x\cdot2+2^2\right)+4=-\left(x+2\right)^2+4\)

Để M max

Suy ra \(-\left(x+2\right)^2+4\)max

Mà \(-\left(x+2\right)^2\le0\)

Suy ra\(-\left(x+2\right)^2+4\text{​​}\le4\)

Vậy M max = 4

2 tháng 6 2017

Câu 1 :ta có \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-\left(m^2-1\right)=1\)

vậy \(\Delta^'\)không phụ thuộc vào m hay phương trình luôn có nghiệm với mọi giá trị của m

Câu 2 :

có \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)

để phương trình có hai nghiệm phân biệt thì : \(\Delta>0\Rightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)

  1. phương trình có hai nghiệm nên ta có viet: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)theo giả thiết có : \(P=\left(x_1+x_2\right)^2-8x_1x_2\)thay viet vào phương trình có : \(P=m^2-8\left(m-1\right)=m^2-8m+8\)\(\Rightarrow P=8\Leftrightarrow m^2-8m=0\Leftrightarrow\hept{\begin{cases}m=0\\m=8\end{cases}}\)
  2. \(P=m^2-8m+8=m^2-8m+16-8=\left(m-4\right)^2-8\ge-8\)vậy nên \(P_{MIN}=-8\)Dấu "=" khi và chỉ khi \(m-4=0\Leftrightarrow m=4\)