K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

\(\frac{x}{3}=\frac{y}{7}\Rightarrow\frac{x+y}{3+7}=\frac{2x+3y}{6+21}=\frac{54}{27}=2\)

  • Với \(\frac{x}{3}=2\Rightarrow x=6\)
  • Với \(\frac{y}{7}=2\Rightarrow y=14\)

Vậy...

9 tháng 7 2019

\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{x}{10}=2\Rightarrow x=10.2=20\)

\(\frac{y}{6}=2\Rightarrow y=2.6=12\)

\(\frac{z}{21}=2\Rightarrow z=21.2=42\)

\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)

\(\Rightarrow ab=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\Leftrightarrow k=3\)

\(\frac{x}{2}=3\Rightarrow x=6\)

\(\frac{y}{3}=3\Rightarrow y=9\)

9 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)   =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x = 20; y = 12; z = 42

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)

          \(\frac{y}{5}=\frac{z}{7}\)  => \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\)  =>  \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)

Vậy ...

7 tháng 8 2016

\(\Rightarrow\frac{2x}{10}=\frac{3y}{9}=\frac{4z}{8}\)

Áp dụng tc của dãy tỉ số bằng nhau Ta có

\(\frac{2x}{10}=\frac{3y}{9}=\frac{4z}{8}=\frac{2x+3y+4z}{10+9+8}=\frac{54}{27}=2\)

\(\Rightarrow\begin{cases}x=10\\y=6\\z=4\end{cases}\)

7 tháng 8 2016

Áp dụng tính chất của dãy tí số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2\cdot5+3\cdot3+4\cdot2}=\frac{54}{27}=2\)

=> \(\frac{x}{5}=2\Rightarrow x=10\)

     \(\frac{y}{3}=2\Rightarrow y=6\)

     \(\frac{z}{2}=2\Rightarrow z=4\)

1 tháng 10 2016

Bạn lần sau đăng ít thôi nhé :)

a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)

=> x = 15 , y = 3

b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)

=> x = 34, y = 4

c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)

=> x = -28 , y=-12

d,e,f,g,h tương tự.

i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)

Làm tương tự các câu còn lại.

j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)

xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)

Nếu k = 2 thì x = 8, y = 14

Nếu k = -2 thì x = -8 , y = -14

k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)

Làm tương tự câu j.

2 tháng 10 2016

bn đăng lại ik

14 tháng 10 2019

a) Ta có:

\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)

\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)

Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)

=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)\(x-y-z=1.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)

Chúc bạn học tốt!

20 tháng 12 2016

a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)

+) \(\frac{x}{-2}=-12\Rightarrow x=24\)

+) \(\frac{y}{1}=-12\Rightarrow y=-12\)

Vậy cặp số \(\left(x;y\right)\)\(\left(24;-12\right)\)

b) Giải:

Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)

Đặt \(\frac{x}{7}=\frac{y}{10}=k\)

\(\Rightarrow x=7k;y=10k\)

\(xy=36\)

\(7k10k=36\)

\(\Rightarrow70k^2=36\)

\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )

c) Giải:

Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)

+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)

+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)

Vậy cặp số \(\left(x;y\right)\)\(\left(\frac{-7}{8};\frac{7}{4}\right)\)

11 tháng 8 2019

*Bài làm:

a)*Ta có : \(\frac{x}{10}\) = \(\frac{y}{6}\) = \(\frac{z}{21}\)

\(\Rightarrow\) \(\frac{5x}{50}\) = \(\frac{y}{6}\) = \(\frac{2z}{42}\) . \(và5x+y-2z=28\)

\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{5x}{50}\) = \(\frac{y}{6}\) = \(\frac{2z}{42}\) = \(\frac{5x+y-2z}{50+6-42}\) = \(\frac{28}{14}\) = \(2\)

\(\Rightarrow\left\{{}\begin{matrix}5x=2.50=100\\y=2.6=12\\2z=2.42=84\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\)

*Vậy \(\left(x;y;z\right)=\left(20;12;42\right)\) .

b)*Ta có: \(\frac{x}{3}\) = \(\frac{y}{4}\) ; \(\frac{y}{5}\) = \(\frac{z}{7}\)

\(\Rightarrow\) \(\frac{x}{15}\) = \(\frac{y}{20}\) ; \(\frac{y}{20}\) = \(\frac{z}{28}\)

\(\Rightarrow\) \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{28}\)

\(\Rightarrow\) \(\frac{2x}{30}\) = \(\frac{3y}{60}\) = \(\frac{z}{28}\) .\(và2x+3y-z=124\)

\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{2x}{30}\) = \(\frac{3y}{60}\) = \(\frac{z}{28}\) = \(\frac{2x+3y-z}{30+60-28}\) = \(\frac{124}{62}\) = \(2\)

\(\Rightarrow\left\{{}\begin{matrix}2x=2.30=60\\3y=2.60=120\\z=2.28=56\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=56\end{matrix}\right.\)

*Vậy \(\left(x;y;z\right)=\left(30;40;56\right)\) .

c) *Ta có: \(\frac{2x}{3}\) = \(\frac{3y}{4}\) = \(\frac{4z}{5}\)

\(\Rightarrow\) \(\frac{40x}{60}\) = \(\frac{45y}{60}\) = \(\frac{48z}{60}\)

\(\Rightarrow40x=45y=48z\)

\(\Rightarrow\) \(\frac{40x}{720}\) = \(\frac{45y}{720}\) = \(\frac{48z}{720}\)

\(\Rightarrow\) \(\frac{x}{18}\) = \(\frac{y}{16}\) = \(\frac{z}{15}\) .\(vàx+y+z=49\)

\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{18}\) = \(\frac{y}{16}\) = \(\frac{z}{15}\) = \(\frac{x+y+z}{18+16+15}\) =\(\frac{49}{49}\) = \(1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.18=18\\y=1.16=16\\z=1.15=15\end{matrix}\right.\)

*Vậy \(\left(x;y;z\right)=\left(18;16;15\right)\) .

d) *Ta có: Đặt: \(\frac{x}{2}\) = \(\frac{y}{3}\) = \(k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)

\(Mà\) \(xy=54\) (theo đề bài)

\(\Rightarrow\) \(xy=2k.3k=54\)

\(\Rightarrow\) \(xy=6k^2=54\)

\(\Rightarrow\) \(k^2=9\)

\(\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)

~ Với \(k=3\) thì: \(\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\end{matrix}\right.\)

~ Với \(k=-3\) thì: \(\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=3.\left(-3\right)=-9\end{matrix}\right.\)

*Vậy \(\left(x;y\right)=\left\{\left(6;9\right),\left(-6;-9\right)\right\}\) .

*Chúc bạn hok tốt!

11 tháng 8 2019

Mình thấy bạn hỏi dạng bài này nhiều rồi mà. nguyen ngoc son

28 tháng 10 2019

a, Đặt \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=7k\\z=5k\end{matrix}\right.\)

\(yz-xy-z^2=-72\)

\(\Rightarrow35k^2-28k^2-25k^2=-72\\ \Rightarrow k^2\left(35-28-25\right)=-72\\ k^2\cdot\left(-18\right)=-72\\ \Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

Với k = 2

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=7\cdot2=14\\z=5\cdot2=10\end{matrix}\right.\)

Với k = -2

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot\left(-2\right)=-8\\y=7\cdot\left(-2\right)=-14\\z=5\cdot\left(-2\right)=-10\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\in\left\{\left(8;14;10\right);\left(-8;-14;-10\right)\right\}\)

b, Đặt \(\frac{x}{2}=\frac{y}{7}=\frac{z}{8}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=7k\\z=8k\end{matrix}\right.\)

\(2x^2+xy-xz=54\)

\(\Rightarrow8k^2+14k^2-16k^2=54\\ \Rightarrow k^2\left(8+14-16\right)=54\\ \Rightarrow k^2\cdot6=54\\ \Rightarrow k^2=9\\ \Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)

Với k = 3

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=7\cdot3=21\\z=8\cdot3=24\end{matrix}\right.\)

Với k = -3

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-3\right)=-6\\y=7\cdot\left(-3\right)=-21\\z=8\cdot\left(-3\right)=-24\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\in\left\{\left(6;21;24\right);\left(-6;-21;-24\right)\right\}\)

c, Đặt \(\frac{x+3}{5}=\frac{y-4}{3}=\frac{z-5}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k-3\\y=3k+4\\z=2k+5\end{matrix}\right.\)

\(2x-3y-z=-26\)

\(\Rightarrow2\left(5k-3\right)-3\left(3k+4\right)-\left(2k+5\right)=-26\\ \Rightarrow10k-6-9k-12-2k-5=-26\\ \Rightarrow-k=-3\\ \Rightarrow k=3\\ \Rightarrow\left\{{}\begin{matrix}x=5\cdot3-3=12\\y=3\cdot3+4=13\\z=2\cdot3+5=11\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(12;13;11\right)\)