K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2022

\(12:x=4\\ x=3\)

11 tháng 3 2022

\(12:x=4\)

\(x=3\)

11 tháng 3 2022

12:x=17-13

12:x=4

x=12:4

x=3

3 tháng 9 2018

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

7 tháng 7 2020

\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)

\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)

\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)

Thay x = 79 vào biểu thức trên , ta có

\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)

\(=0+79+15\)

\(=94\)

Vậy \(P(x)=94\)khi x = 79

\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)

\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)

Thay x = 9 vào biểu thức trên , ta có

\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)

\(=0-9+10\)

\(=1\)

Vậy \(Q(x)=1\)khi x = 9

\(c.R(x)=x^4-17x^3+17x^2-17x+20\)

\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Thay x = 16 vào biểu thức trên , ta có

\(R(16)=(16-16)(16^3-16^2+16)-16+20\)

\(=0-16+20\)

\(=4\)

Vậy \(R(x)=4\)khi x = 16

\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)

\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)

\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+....+x)-x+10\)

Thay x = 12 vào biểu thức trên , ta có

\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)

\(=0-12+10\)

\(=-2\)

Vậy \(S(x)=-2\)khi x = 12

Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện

Chúc bạn học tốt , nhớ kết bạn với mình

24 tháng 7 2018

a, x = 79 => x + 1 = 80

Ta có:\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)

\(=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)

\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\)

\(=x+15=79+15=94\)

Còn lại tương tự

3 tháng 9 2018

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Lời giải:

a) Với \(x=79\)

\(P(x)=x^7-80x^6+80x^5-80x^4+...+80x+15\)

\(=(x^7-79x^6)-(x^6-79x^5)+(x^5-79x^4)-....-(x^2-79x)+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-...-x(x-79)+x+15\)

\(=(x^6-x^5+x^4-...-x)(x-79)+x+15\)

\(=(x^6-x^5+x^4-...-x)(79-79)+79+15=79+15=94\)

b) Hoàn toàn tương tự phần a.

\(Q(x)=(x^{14}-9x^{13})-(x^{13}-9x^{12})+(x^{12}-9x^{11})-...+(x^2-9x)-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+x^{11}(x-9)-...+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+x^{11}-...+x)-x+10\)

\(=(9-9)(x^{13}-x^{12}+...+x)-9+10=0-9+10=1\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

c)

\(R(x)=(x^4-16x^3)-(x^3-16x^2)+(x^2-16x)-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Với $x=16$ thì $Q(x)=(16-16)(x^3-x^2+x)-16+20=0-16+20=4$

d)

\(S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+x(x-12)-x+10\)

\(=x^9(x-12)-x^8(x-12)+x^7(x-12)-...+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+x^7-..+x)-x+10\)

\(=(12-12)(x^9-x^8+x^7-...+x)-12+10=-12+10=-2\)

\(A=x^3-30x-31x+1\)

=\(x^3-31x^2+x^2-31x+1\)

=\(x^2\left(x-31\right)+x\left(x-31\right)+1\)

=1(do x=31)

\(B= x^4 -17x^3 +17x^2 -17x + 20 tại x= 16\)

\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)

=\(x^3\left(x-16\right)+x^2\left(x-16\right)+x\left(x-16\right)-x+20\)

=-16+20=4

5 tháng 9 2017

Thay 30 = x - 1, 2 câu kia tương tự

Bài 1: 

a: Đặt Q(x)=0

=>-2x=-8

hay x=4

b: Đặt P(x)=0

=>(x-2)*(x+2)=0

=>x=2 hoặc x=-2

c: Vì \(x^2+2019>=2019>0\forall x\)

nên G(x) vô nghiệm

9 tháng 8 2016
Ta có a = √3 - √(3-√12 +1) = √3 - √(3 - 2√3 + 1) = √3 - √3 + 1 = 1 Thế vào ta có 1-17+m=0 => m=16
9 tháng 8 2016

Ta có:

\(a=\sqrt{3}-\sqrt{3-\sqrt{13-2\sqrt{12}}}=\sqrt{3}-\sqrt{3-\sqrt{\left(\sqrt{12}-1\right)^2}}\)

\(=\sqrt{3}-\sqrt{3-\sqrt{12}+1}=\sqrt{3}-\sqrt{4-2\sqrt{3}}=\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-\sqrt{3}+1\)

nên  \(a=1\)

Vì  \(a\)  là nghiệm của đa thức  \(P\left(x\right)\)  nên  nhất định rằng  \(P\left(x\right)\)  sẽ chứa một nhân tử chung có dạng  \(a-1\)

Ta biểu diễn lại đa thức  \(P\left(x\right)\) như sau:

\(P\left(x\right)=x^9-17x^8+m=\left(a-1\right)A\) 

\(\Rightarrow\)  \(P\left(1\right)=1^9-17.1^8+m=\left(1-1\right)A=0\)

Hay nói cách khác, ta suy ra được  \(m=16\)

a) 

5.(12-x)-20=30

⇒60-5x-20=30

⇒-5x=30+20-60

⇒-5x=-10

⇒x=2

b)(17x - 25 ) : 8 + 65 = 92

(17x - 25 ) : 8 + 65 = 81

17x - 25 = 16 x 8 = 128

17x = 128+25=153

x= 153:17 =9

c)

x=23

Giải thích các bước giải:

3x – 10 = 2x + 13

3x-2x=13+10

x=23

d)4(2x+7)-3(3x-2)=24

4.2x+4.7-3.3x+3.2=24

8x+28-9x+6=24

8x-9x=24-28-6=-10

=>(-1)x=-10

        x=-10:(-1)

        x=10

2 tháng 3 2020

a. \(5\cdot\left(12-x\right)-20=30\Leftrightarrow5\left(12-x\right)=50\)

\(\Leftrightarrow12-x=50:5=10\)

\(\Leftrightarrow x=12-10=2\)

b. \(\left(17x-25\right):8+65=9^2\)

\(\Leftrightarrow\left(17x-25\right):8=81-65=16\)

\(\Leftrightarrow17x-25=16:8=2\)

\(\Leftrightarrow17x=2+25=27\Leftrightarrow x=\frac{27}{17}\)

c. \(3x-10=2x+13\)

\(\Leftrightarrow3x-2x=10+13\)

\(\Leftrightarrow x=23\)

d. \(4\cdot\left(2x+7\right)-3\cdot\left(3x-2\right)=24\)

\(\Leftrightarrow8x+28-9x+6=24\)

\(\Leftrightarrow34-x=24\Leftrightarrow x=10\)