Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC
a. Chứng minh tam giác ABC vuông
b) Chứng minh ΔBCD cân
c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
2: Xét ΔBCD có
BA là đường cao
BA là đường trung tuyến
Do đó: ΔBCD cân tại B
3: Xét ΔBCD có
BA là đường trung tuyến
CE là đường trung tuyến
BA cắt CE tại G
Do đó: G là trọng tâm của ΔBCD
=>AG=1/3BA=1(cm)
a: Xét ΔBCD có
BA là đường cao
BAlà trung tuyến
=>ΔBCD cân tại B
=>BC=BD
b,c: Xét ΔBDC có
BA,CE là trung tuyến
BA cắt CE tại K
=>K là trọng tâm
=>AK=1/3*AB=1cm và CK=2/3CE
=>\(CK=\sqrt{1^2+4^2}=\sqrt{17}\)
=>\(CE=\dfrac{3}{2}\sqrt{17}\left(cm\right)\)
CD=4+4=8cm
=>CE<CD
Bài làm
a) Xét tam giác ABC có:
BC2 = 52 = 25
AC2 + AB2 = 32 + 42 = 25
=> BC2 = AB2 + AC2
=> Tam giác ABC vuông tại A ( theo Py-ta-go đảo )
b) Vì A là trung điểm DC ( Do AD = AC )
Mà góc BAC = 90o
=> BA là trung trực.
=> BD = BC
=> Tam giác BCD cân tại B