Tìm số nguyên n (2)
4n+1 chia hết cho 2n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
`4n+3 vdots 2n+1`
`=>4n+2+1 vdots 2n+1`
`=>2(2n+1)+1 vdots 2n+1`
`=>1 vdots 2n+1`
`=>2n+1 in Ư(1)={1,-1}`
`*2n+1=1=>2n=0=>n=0(tm)`
`*2n+1=-1=>2n=-2=>n=-1(tm)`
Vậy `n in {0;-1}` thì `4n+3 vdots 2n+1`
\(4n+3⋮2n+1\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\Leftrightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n + 1 | 1 | -1 |
n | 0 | -1 |
4n+1 hia hết cho 2n-1
=>4n-2+3 chia hết cho 2n-1
2(2n-1)+3 chia hết cho2n-1 mà 2(2n-1) chia hết cho 2n-1 nên 3 chia hết cho 2n-1
hay 2n-1 thuộc Ư(3)={3;-3;1;-1}
2n-1=3=>n=2
2n-1=-3=>n=-1
2n-1=1=>n=1
2n-1=-1=>n=0
VẬY n thuộc {2;-1;1;0}
Theo bài ra ta có:
4n+1chia hết cho 2n-1
=>(4n+1)-(2n-1)chia hết cho2n-1
=>(4n+1)-2.(2n-1) chia hết cho 2n-1
=>4n+1-4n-2 chia hết cho 2n-1
=>-1 chi hết cho 2n-1=>2n-1 thuộc Ư(-1)={1;-1}
2n-1 | 1 | -1 |
n | 1 | 0 |
Vậy n=1 hoặc n=0
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
\(\left(4n+1\right)⋮\left(2n-1\right)\\ \Rightarrow\left(4n-2+3\right)⋮\left(2n-1\right)\\ \Rightarrow\left[2\left(2n-1\right)+3\right]⋮\left(2n-1\right)\)
Vì \(2\left(2n-1\right)⋮\left(2n-1\right)\Rightarrow3⋮\left(2n-1\right)\Rightarrow2n-1\inƯ\left(3\right)\)
Ta có bảng:
Vậy \(n\in\left\{-1;0;1;2\right\}\)