K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có

AB2 + AC2 = BC2

hay 62 + 82 = BC2

=> BC2 =36 + 64

=> BC2 =100

=> BC = 10 (cm)

24 tháng 3 2019

b) Xét \(\Delta ABD\)và \(\Delta BDH\)

\(\widehat{BAD}=\widehat{BHD}=90^o\)

BD chung

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔBAD=ΔBHD

c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: DK=DC và AK=HC

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

b: Ta có: ΔBAD=ΔBHD

nên DA=DH

hay D nằm trên đường trung trực của AH(1)

Ta có: BA=BH

nên B nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH

hay BD⊥AH

12 tháng 2 2022

Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)

c) Xét tam giác ECK và tam giác ECA có:

EKC=EAC=90

EC cạnh chung

ECK=ECA ( vì CE là p/g của ABC)

=>Tam giác ECK=Tam giác ECA ( ch-gn)

=>CK=CA( 2 cạnh tương ứng)

Mà AB=HB( chứng minh a)

=>CK+BH=CA+AB

=>CH+KH+BK+HK=AC+AB

=>(BK+KH+CH)+HK=AC+AB

=>BC+HK=AB+AC (ĐPCM)

d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B

=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)

Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)

=\(\dfrac{360-90}{2}=135\)

=>BAK+2HAK+HAC=135

Mà BAK+HAC=BAC-HAK=90-HAK

=>90-HAK+2HAK=135

=>90+HAK=135

=>HAK=45

11 tháng 12 2017

B A C K I D

a) Xét tam giác BAD và tam giác BHD có :

\(\widehat{BAD}=\widehat{BHD}=90^o\)

BD chung

\(\widehat{ABD}=\widehat{HBD}\) (Do BD là phân giác)

\(\Rightarrow\Delta BAD=\Delta BHD\) (Cạnh huyền góc nhọn)

\(\Rightarrow AB=HB\)

Ta cũng có \(\Delta BAD=\Delta BHD\) nên AD = HD.

Xét tam giác ADK và tam giác HDC có:

\(\widehat{KAD}=\widehat{CHD}=90^o\)

AD = HD

\(\widehat{ADK}=\widehat{HDC}\) (Hai góc đối đỉnh)

\(\Rightarrow\Delta ADK=\Delta HDC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow AK=HC\)

b) (Cô làm theo cách khi chưa học về các đường đồng quy trong tam giác)

Kéo dài BD cắt KC tại I.

Ta thấy BK = BA + AK = BH + HC = BC

 Xét tam giác BKI và tam giác BCI có :

\(\widehat{KBI}=\widehat{CBI}\)

BI chung

BK = BC (CMT)

\(\Rightarrow\Delta BKI=\Delta BCI\) (c-g-c)

\(\Rightarrow\widehat{BIK}=\widehat{BIC}\)  (Hai góc tương ứng)

Mà chúng lại là hai góc kề bù nên \(\widehat{BIK}=\widehat{BIC}=90^o\)

Vậy nên BD vuông góc KC.

c) Xét tam giác ABH có BA = BH nên nó là tam giác cân.

Vậy BD là phân giác thì đồng thời nó là đường cao.

Vậy BD vuông góc AH.

Lại có BD vuông góc KC nên AH // KC.

26 tháng 4 2023

a. Xét \(2\Delta:\Delta ADB\) và \(\Delta HDB\) có:

\(\left\{{}\begin{matrix}\widehat{ABD}=\widehat{HBD}\\BD.chung\end{matrix}\right.\Rightarrow\Delta ADB=\Delta HDB\) (cạnh huyền - góc nhọn)

\(\Rightarrow DA=DH\)

b. Xét \(2\Delta:\Delta KAD\) và \(\Delta CHD\) có:

\(\left\{{}\begin{matrix}\widehat{KDA}=\widehat{CDH}\left(đối.đỉnh\right)\\AD=DH\left(câu.a\right)\end{matrix}\right.\)

\(\Rightarrow\Delta KAD=\Delta CHD\) (cạnh góc vuông - góc nhọn kề)

\(\Rightarrow DK=DC\Rightarrow\Delta KDC.cân\)

c. Ta có DC = DK

Mà \(\Delta KAD\) vuông tại A có cạnh huyền là DK

\(\Rightarrow AD< DK\) hay \(DA< DC\)

a: Xet ΔBAD vuông tại A và ΔBHD vuông tại H co

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: Xet ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

góc ADK=góc HDC

=>ΔDAK=ΔDHC

=>DK=DC

c: DA=DH

DH<DC

=>DA<DC

24 tháng 6 2020

( hình vẽ chỉ mang tính chất minh họa )

A B C H E

a) Xét tam giác ABH và tam giác DBH có :

Góc BAH = Góc BDH ( = 90 độ )

Góc ABH = góc DBH ( gt )

BH chung

=> Tam giác ABH = tam giác DBH ( ch - gn )  - đpcm ( * )

b) Xét tam giác AHE và tam giác DHC có :

Góc EAH = góc CDE ( = 90 độ )

AH = HD ( Theo ( * ) )

Góc AHE = Góc DHC ( đối đỉnh )

=> Tam giác AHE = tam giác DHC ( g.c.g ) 

=> AE = DC ( 1 )

Từ ( * ) => BA = BD ( 2 )

Từ ( 1 ) và ( 2 ) : BA = BC

=> Tam giác BEC cân tại B - đpcm 

c) Ta có góc DHC = góc ABC ( vì cùng phụ với góc BCA ) - đpcm

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

gócHBK chung

=>ΔBHK=ΔBAC

=>BK=BC

c: ΔBKC cân tại B

mà BM là trung tuyến

nên BM là phân giác

=>B,D,M thẳng hàng