K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Cau 1:

ta có A= {10;15;20;...90;95}

=> A=(10+90)+(15+85)+...+95

mà A có : (95-5):5+1= 19 hạng tử nên sẽ có 9 cặp và dư một số

=> A= 100.9 +95

= 995

21 tháng 3 2017

Câu 2

ta có\(^{ }\) x^2 luôn lớn hơn hoặc bằng 0

=> x^2 +2 luôn lớn hơn hoặc bằng 2.

=> (x^2 +2)^2 luôn lớn hoặc bằng 4

=> Giá trị nhỏ nhất của biểu thức (x^2 +2)^2 là 4

31 tháng 3 2017

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)

    \(=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\) 

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

31 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)

\(\Rightarrow1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\frac{1}{27}\ge xyz\)

Ta có  \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 ) 

Xét  \(3\sqrt[3]{\frac{1}{64xyz}}\)

Ta có  \(\frac{1}{27}\ge xyz\)

\(\Rightarrow\frac{64}{27}\ge64xyz\)

\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)

\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 ) 

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)

Vậy  \(M_{min}=\frac{9}{4}\)

3 tháng 11 2017

A) Nếu A = B = C = 9 thì A là Đ

Còn nếu A, B, C không bằng nhau thì S

B) Sai vì trong 3 số A,B,C có 1 số là số 0

Vì 0 x 1 x ........... = 0 

3 tháng 11 2017

A)  \(Đ\)

B)\(S\)

 |x-2y| =5 <=> có 2TH x-2y=5 hoặc x-2y = -5 <=> x= 5+2y hoặc x = -5+2y. 
TH1: x=5+2y <=> bạn thay giá trị này của x vào pt 2x=3y => y=-10,x= -15. Muốn tìm z thì bạn thay x hoặc y vào pt ở đề bài, x hoặc y thay vào đều được: z= -6 
TH2:Tương tự x=-5+2y <=> y=10, x= 15,z= 6