tinh ho to
A=2/1x2+2/2x3+2/3x4+......+2/99x101
B=(1+1/2)x(1+1/3)x(1+1/4)x.......x(1+1/2016)
C=3/1x4+3/4x7+3/7x10+............+3/64x67
D=(1-1/2)x(1-1/3)x(1-1/4)x............x(1-1/20)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
Bài 1:
$M=3.4.5+4.5.6+...+13.14.15$
$4M=3.4.5(6-2)+4.5.6(7-3)+....+13.14.15(16-12)$
$=-2.3.4.5+3.4.5.6-3.4.5.6+4.5.6.7+....-12.13.14.15+13.14.15.16$
$=-2.3.4.5+13.14.15.16=43560$
$M=43560:4=10890$
Bài 2:
a.
$3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}$
$=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}$
$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
$M=\frac{99}{100}:3=\frac{33}{100}$
\(\Leftrightarrow2\left(x-\dfrac{1}{3}\right)\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=\dfrac{3}{4}\)
\(\Leftrightarrow2\left(x-\dfrac{1}{3}\right)\left(1-\dfrac{1}{10}\right)=\dfrac{3}{4}\Leftrightarrow\dfrac{9}{10}\left(x-\dfrac{1}{3}\right)=\dfrac{3}{8}\)
\(\Leftrightarrow x-\dfrac{1}{3}=\dfrac{5}{12}\Leftrightarrow x=\dfrac{5}{12}+\dfrac{1}{3}=\dfrac{9}{12}=\dfrac{3}{4}\)
(1-1/2)(1-1/3)(1-1/4)….(1-1/2002).x=1-1/1x2-1/2x3-1/3x4-...1/2002x2003 ae ghi lời giải jup mình nhé. Tìm x
Gọi \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2002}\right).x\)
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}....\frac{2001}{2002}.x=\frac{x}{2002}\)
Gọi \(B=1-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{2002.2003}\)
=>\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\right)\)
\(\Rightarrow B=1-\left(1-\frac{1}{2003}\right)=1-\frac{2002}{2003}=\frac{1}{2003}\)
\(\Rightarrow\frac{x}{2002}=\frac{1}{2003}\Rightarrow x=\frac{2002}{2003}\)
a) 3/7 + 4/9 + 4/7 + 5/9
= ( 3/7 + 4/7 ) + ( 4/9 + 5/9 )
= 7/7 + 9/9
= 1 + 1
= 2
b)1/5 + 4/10 + 9/15 + 16/20 + 25/25 + 36/30 + 49/35 + 64/40 + 81/45
= 1/5 + 2/5 + 3/5 + 4/5 + 5/5 + 6/5 + 7/5 + 8/5 + 9/5
= ( 1/5 + 9/5 ) + ( 2/5 + 8/5 ) + (7/5 + 3/5 ) + ( 4/5 + 6/5 ) + 5/5
= 2 + 2 + 2 + 2 + 1
= 2 x 4 + 1
= 8 +1
= 9
c) 1/8 + 1/12 + 3/8 + 5/12
= ( 1/8 + 3/8 ) + ( 1/12 + 5/12)
= 4/8 + 6/12
= 1/2 + 1/2
= 2/4 = 1/2
mỏi tay rồi
d; (1 - \(\dfrac{1}{2}\)) x (1 - \(\dfrac{1}{3}\)) x (1 - \(\dfrac{1}{4}\)) x ... x ( 1 - \(\dfrac{1}{100}\))
= \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{3}{4}\) x ... x \(\dfrac{99}{100}\)
= \(\dfrac{1}{100}\)
1> a) \(\frac{5}{7}x4:\frac{5}{9}=\frac{5}{7}:\frac{5}{9}x4=\frac{5}{7}x\frac{9}{5}x4=\frac{9}{7}x4=\frac{9x4}{7}=\frac{36}{7}\)
\(b,8x\frac{2}{3}:\frac{1}{2}=8x\frac{2}{3}x\frac{2}{1}=8x2x\frac{2}{3}=16x\frac{2}{3}=\frac{32}{3}\)
\(c,6:\frac{3}{5}-\frac{7}{6}x\frac{6}{7}=6x\frac{5}{3}-1=10-1=9\)
\(\frac{21}{5}x\frac{10}{11}+\frac{57}{11}=\frac{42}{11}+\frac{57}{11}=\frac{99}{11}=9\)
2) a) \(\frac{35}{9}:x=\frac{35}{6}\)
\(x=\frac{35}{9}:\frac{35}{6}\)
\(x=\frac{35}{9}x\frac{6}{35}\)
\(x=\frac{2}{3}\)
b) \(\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}\right)x10-X=0\)
\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{5}-\frac{1}{6}\right)x10-X=0\)
\(\left(\frac{1}{1}-\frac{1}{6}\right)x10-X=10\)
\(\frac{5}{6}x10-X=0\)
\(X=\frac{5}{6}x10=\frac{25}{3}\)
Đúng nha !!!!
1/a/\(\frac{5}{7}\cdot4:\frac{5}{9}=\frac{20}{7}:\frac{5}{9}=\frac{20}{7}\cdot\frac{9}{5}=\frac{36}{7}\)
b/\(8\cdot\frac{2}{3}:\frac{1}{2}=\frac{16}{3}:\frac{1}{2}=\frac{16}{3}\cdot\frac{2}{1}=\frac{32}{3}\)
c/\(6:\frac{3}{5}-\frac{7}{6}\cdot\frac{6}{7}=6\cdot\frac{5}{3}-1=10-1=9\)
2/a/\(\frac{35}{9}:x=\frac{35}{6}\)
\(x=\frac{35}{9}:\frac{35}{6}=\frac{35}{9}\cdot\frac{6}{35}\)
\(x=\frac{2}{3}\)
b/\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\right)\cdot10-x=0\)
\(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\cdot10-x=0\)
\(\left(\frac{30}{60}+\frac{10}{60}+\frac{5}{60}+\frac{2}{30}\right)\cdot10-x=0\)
\(\frac{47}{60}\cdot10-x=0\)
\(\frac{47}{6}-x=0\)
\(x=\frac{47}{6}-0\)
\(x=\frac{47}{6}\)
giup minh nhe
Chị sẽ giúp em nốt mấy bài này, em còn nhận ra chị ko vậy?
\(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{99x101}\)
\(A=2x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x101}\right)\)
\(A=2x\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=2x\left(1-\frac{1}{101}\right)=2x\frac{100}{101}=\frac{200}{101}\)
------------------------------
\(B=\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{2016}\right)\)
\(B=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{2017}{2016}\) (rút gọn từ trên tử xuống dưới mẫu nhé)
\(B=\frac{2017}{2}\)
-------------------------------
\(C=\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+...+\frac{3}{64x67}\)
\(C=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\)
\(C=1-\frac{1}{67}=\frac{67}{67}-\frac{1}{67}=\frac{66}{67}\)
--------------------------------
\(D=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{20}\right)\)
\(D=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{19}{20}\)(chỗ này cũng rút gọn từ trên tử xuống dưới mẫu)
\(D=\frac{1}{20}\)