K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

mới giải đucợ 1 vế nè. xem tạm nhé
đặt cái biểu thức là S đi ^^
ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}.\frac{1}{n\left(n+1\right)} =\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right) .\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\sqrt{n}.\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right).\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

 =\(\sqrt{n}.\frac{2}{\sqrt{n}}.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

áp dụng ta được: \(\frac{1}{2\sqrt{1}}< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{2}}< \frac{2}{\sqrt{2}}-\frac{2}{\sqrt{2}}\)

...................................................

\(\frac{1}{2011\sqrt{2010}}< \frac{2}{\sqrt{2010}}-\frac{2}{\sqrt{2011}}\)

=> \(S< 2-\frac{2}{\sqrt{2011}}< \frac{88}{45}\)
còn một vế nữa để mai nhé ^^ giờ mình bận :P hì

4 tháng 7 2016

mình bị ấn sai r :3 \(\frac{1}{3\sqrt{2}}< \frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\)đó nhá.sr nha ^^

21 tháng 12 2017

Có 23 chia 7 dư 1 => những số có mũ chia hết cho 3 đều chia 7 dư 1

<=> 23 + 26 + ...+ 290 chia 7 dư 2 ( từ 3 đến 90 có 30 số chia hết cho 3 )

Dãy số còn lại 2, 22, 24,... 289

Đặt A = 2 + 22 +...+289 = (2 + 22) + 23(2 + 22) + ... + 287(2 + 22)

<=> A = (2 + 22)(1 + 23 + ... + 287)

Tương tự ta có từ 3 đến 87 có 29 số chia hết cho 3 => 23 + ... + 287 chia 7 dư 1

=> 1 + 23 + ... + 287 chia 7 dư 2 => A chia 7 dư - 2 ( vì 2 + 22 chia 7 dư -1 )

Vậy T chia hết cho 7

9 tháng 4 2020

\(\frac{87}{89}< \frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}< \frac{88}{45}\)

Đặt \(A=\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}\)

\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}=\frac{1}{\sqrt{k\left(k+1\right)}}>\frac{1}{\left(k+1\right)\sqrt{k}}>\frac{1}{\left(k+1\right)k}=\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow1-\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2010}}-\frac{1}{\sqrt{2011}}>A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow1-\frac{1}{\sqrt{2011}}>A>1-\frac{1}{2011}\)

\(\Rightarrow\frac{88}{45}>\frac{2011-\sqrt{2011}}{2011}>A>\frac{2010}{2011}>\frac{87}{89}\)

\(\Rightarrow\frac{87}{89}< \frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}< \frac{88}{45}\)

10 tháng 4 2020

Phạm Thị Diệu Huyền chà chà gắt quá

3 tháng 6 2019

Ta có: OA = OC (bán kính) nên ΔOAC cân tại O.

suy ra  C ^ = O A C ^     1

 

Lại có O'A = O'D (bán kính) nên ΔO'AD cân tại O'

Vậy OC // O'D (có hai góc so le trong bằng nhau).

3 tháng 8 2018

Ta có: OA = OC (bán kính) nên ΔOAC cân tại O.

Để học tốt Toán 9 | Giải bài tập Toán 9

Lại có O'A = O'D (bán kính) nên ΔO'AD cân tại O'

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy OC // O'D (có hai góc so le trong bằng nhau).

16 tháng 5 2016

b) \(\frac{x-11}{89}+\frac{x-13}{87}+\frac{x-15}{85}+\frac{x-17}{83}=4\)

\(=>\left(\frac{x-11}{89}-1\right)+\left(\frac{x-13}{87}-1\right)+\left(\frac{x-15}{85}-1\right)+\left(\frac{x-17}{83}-1\right)=0\)

\(=>\frac{x-100}{89}+\frac{x-100}{87}+\frac{x-100}{85}+\frac{x-100}{83}=0\)

\(=>\left(x-100\right)\left(\frac{1}{89}+\frac{1}{87}+\frac{1}{85}+\frac{1}{83}\right)=0\)

=> x-100 =0 => x=100

Vậy nghiệm là 100

 

16 tháng 5 2016

Cái đề có j đó ko đúng thì phải. Câu a) và câu b) đâu phải là đa thức đâu, đẳng thức mà

19 tháng 4 2019

Ta có: 87 - 218 = (23)7 - 218 = 221 – 218 = 217.( 24 -2)= 217.(16 - 2) = 24.14 ⋮ 14

13 tháng 10 2021

\(A=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=7\cdot2^{18}=14\cdot2^{17}⋮14\\ B=3^{100}-2^{100}+3^{98}-2^{98}\\ B=3^{98}\left(3^2+1\right)-2^{97}\left(2^3+2\right)\\ B=3^{98}\cdot10-2^{97}\cdot10=10\left(3^{98}-2^{97}\right)⋮10\\ C=1+3+3^2+...+3^{99}\\ C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\\ C=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\\ C=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{96}\right)\\ C=40\left(1+3^4+...+3^{36}\right)⋮40\)

13 tháng 10 2021

siêu siêu siêu cảm ơn lun!

 

\(A=\dfrac{1}{5\times7}+\dfrac{1}{7\times9}+\dfrac{1}{9\times11}+...+\dfrac{1}{87\times89}\)

\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{87}-\dfrac{1}{89}\)

\(A=\dfrac{1}{5}-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-...-\left(\dfrac{1}{87}-\dfrac{1}{87}\right)-\dfrac{1}{89}\)

\(A=\dfrac{1}{5}-\dfrac{1}{89}\)

\(A=\dfrac{84}{445}\)

Vậy, `A=84/445.`

6 tháng 6 2023

A = \(\dfrac{1}{5\times7}\) + \(\dfrac{1}{7\times9}\)+\(\dfrac{1}{9\times11}\)+...+\(\dfrac{1}{87\times89}\)

A = \(\dfrac{1}{2}\) \(\times\)(  \(\dfrac{2}{5\times7}\)+\(\dfrac{2}{7\times9}\)+\(\dfrac{2}{9\times11}\)+...+\(\dfrac{2}{87\times89}\))

A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{11}\) +...+ \(\dfrac{1}{87}\) - \(\dfrac{1}{89}\))

A = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{5}\) - \(\dfrac{1}{89}\))

A = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{84}{445}\) 

A = \(\dfrac{42}{445}\)